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Abstract—The ellipsoid technique is widely used in the guaranteed estimation for approxima-
tion of the reachability domains of dynamic systems. The present paper considered the issues
of external ellipsoidal estimation of the current and limiting reachability sets of a stable dis-
crete dynamic linear system. Recurrent estimation algorithms using the criterion of minimum
trace of the “weighted” ellipsoid matrix were developed for these systems, and their limiting
properties were considered.

1. INTRODUCTION AND FORMULATION OF THE PROBLEM

Wide development of the deterministic or guaranteed approach to estimation, filtration, and
identification of the systems [1–3] started in the 1970’s as an alternative to the statistical methods
and Kalman filtration. This approach assumes that the system errors and perturbations are un-
known, but bounded in norm by vectors. This representation of uncertainty in the model is most
natural in many applications. Yet owing to their complexity and computational laboriousness, the
algorithms based on this description are used insufficiently in applications. For example, the in-
terval formulation often results in NP-hard problems. In this connection, further development and
simplification of these methods is of prime importance. Here, the method of ellipsoids where the
system errors are assumed to satisfy quadratic ellipsoidal constraints and an ellipsoid containing
the system phase vector is sought is one of simplest and most convenient approaches to guaranteed
estimation. The ellipsoidal technique is a rather popular tool (see [4–8]) used, in particular, to
analyze various problems of the control theory.

Let us consider a stationary discrete linear model obeying the equation

xk+1 = Axk + B wk, k = 0, 1, 2, . . . , (1)

where xk ∈ R
n is the system phase vector, wk ∈ R

m is the vector of external perturbations, and
A and B �= 0 are real matrices of appropriate sizes. We assume without loss of generality that
‖wk‖ ≤ 1, k = 0, 1, 2, . . . , where ‖ · ‖ is the Euclidean norm.

We denote the ellipsoid phase space R
n as a linear transform of the unit sphere

E = { c + Sv : ‖v‖ ≤ 1 }

which with this notation may be degenerate, that is, have no internal points in R
n. Here, the

vector c is the center of the ellipsoid and P = SST is the symmetrical nonnegatively definite
matrix defining its form. The ellipsoid itself will be denoted below by E(c, P ).
1 This work was supported in part by the Russian Foundation for Basic Research, project no. 02-01-00127, Program
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ON CONVERGENCE OF EXTERNAL ELLIPSOIDAL APPROXIMATIONS 1211

In this case, the vector Bwk belongs to the—possibly degenerate—ellipsoid E(0, BBT) which
corresponds to the additive external perturbations acting on the system. We assume that the initial
phase vector x0 is not known precisely, but belongs to a bounded—possibly degenerate—ellipsoid
E0 = E(c0, P0). Then,

Dk =
{
xk = Akx0 + Ak−1Bw0 + Ak−2Bw1 + · · · + ABwk−2 + Bwk−1 :

x0 ∈ E(c0, P0), ‖wj‖ ≤ 1, j = 0, . . . , k − 1 } (2)

is the reachability set of system (1) at the instant k. Therefore, Dk is the algebraic sum of k + 1
ellipsoid which generally is a convex set, rather than an ellipsoid. In the problems of estimation
of the states of dynamic systems, this set must be described precisely or approximately. Various
algorithms approximating Dk by a class of ellipsoids that are optimal (suboptimal) in a sense
were developed for continuous and discrete models [5–7, 9]. In the case of external approximation,
optimality is understood in the sense of minimum-size ellipsoid. In the present paper, by the size
of the ellipsoid E(c, P ) we mean

fV (P ) = tr V P , (3)

where V is a symmetrical positively definite “weight” matrix. The minimum-size ellipsoid fV (P )
will be called optimal by the criterion for trace. Much attention is paid in the literature also to the
minimum-volume ellipsoids [5, 6] and to other, more general, criteria [9, 10].

Measure (3) is very convenient by virtue of its linearity as the function of the matrix P =
[pij ] ∈ R

n×n
+ . Its dependence on the weight matrix enables one to improve the resulting optimal

ellipsoidal estimates by a “correct” choice of V . We note that for the weight identity matrix V = I,

in particular, fV (P ) =
n∑

i=1
pii is the sum of the squared lengths of half-axes of E(c, P ).

In the general case, the weight matrix is always representable as

V = UTU, det U �= 0 . (4)

Therefore,

fV (P ) = tr UPUT = tr P̃ = fI(P̃ ) , (5)

where P̃ = UPUT is the matrix of the same ellipsoid in the transformed state space

x̃ = Ux . (6)

The matrices A and B of the dynamic system (1) are transformed as follows:

Ã = UAU−1, B̃ = UB . (7)

This view of measure (3) allows one to reduce the study of the resulting estimates to the case of
the weight identity matrix V = I. When constructing estimation algorithms, however, the general
expression (3) renders to the estimates an additional, matrix “degree of freedom” whose adequate
use improves their accuracy.

Let us denote the spectral radius of the matrix A by

ρA = max
1≤i≤n

|λi(A)| , (8)

where λi(A) are the eigenvalues of A. The matrix A and system (1) are said to be stable if
ρA < 1. For the stable matrices (and only for them) lim

k→∞
Ak = 0. Therefore, it follows immediately
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from (1) that stability of A is the necessary and sufficient condition for convergence of the sequence
of reachability sets Dk of the original dynamic system to a compactum D∞ which, consequently,
is independent of the initial ellipsoid E(c0, P0). It is only natural to raise in this connection the
question of constructing external ellipsoidal approximations of the reachability sets and examining
their limiting behavior.

Using the trace criterion fI(P ) = tr P , a recurrent locally optimal algorithm of ellipsoidal
estimation of the sets Dk was proposed [11, 12] and boundedness of the estimate sequence was
proved for ρA < 1. We note that stability of the matrix A does not guarantee boundedness of a
similar sequence of the ellipsoids calculated using the minimum-volume criterion. For continuous
dynamic linear systems, similar questions were discussed in [5, 13, 14] which studied for stability
the equilibrium points of the differential equations of the locally optimal ellipsoids of stable systems
([5] considered only the variant with the diagonal matrix of dynamics A). Nevertheless, the total
picture of global behavior of the external ellipsoidal estimates for the continuous stable systems is
rather uncertain. For example, it is not clear whether they will be convergent or at least bounded.

The present paper aims at studying the problem of external ellipsoidal estimation of the reach-
ability sets Dk and D∞ and obtaining the convergence conditions for the estimation algorithms
(optimal in the criterion for trace of the “weighted” matrix of ellipsoid) proposed here for the stable
discrete linear systems (1).

2. ESTIMATION OF THE LIMITING REACHABILITY SET

In order to verify the possibility of direct determination of the ellipsoid E(0, P ) ⊇ D∞ that
is minimum by the criterion fV (P ), we first of all use the following result encountered in one or
another form in [2, 3, 5, 15].

Theorem 1. Let D∞ be the limiting reachability set of the stable dynamic system (1). For any
fixed γ ∈ (ρ2

A , 1), D∞ is contained in the ellipsoid E(0, Pγ) with the matrix which is the solution
of the Lyapunov equation

Pγ =
APγAT

γ
+

BBT

1 − γ
. (9)

Moreover, for V > 0 the function ϕ(γ) = fV (Pγ) = tr V Pγ is strictly convex over the interval
ρ2

A < γ < 1.

For completeness of presentation, the theorem is proved in the Appendix.
Therefore, the trace-minimal ellipsoid from the one-parameter family E(0, Pγ ) is the solution of

the convex minimization problem and provides a “good” external estimate of the limiting reach-
ability set. This estimate can be calculated directly from the known matrices A and B without
analyzing the evolution of the system reachability sets. This result is important, in particular, for
suppression of bounded external perturbations, as well as in other problems of the control theory.
We also note that the derivative of fV (Pγ) = tr V Pγ with respect to γ ∈ (ρ2

A, 1) is calculated fairly
easily because the matrix P ′

γ = dPγ/dγ is a single solution of the following Lyapunov equation:

P ′
γ =

AP ′
γAT

γ
− Pγ

γ
+

BBT

γ(1 − γ)2
.

Example 1. Let the stable system (1) with the matrices A = diag{0.2; 0.8} and B = diag{1; 0.2}
be given. For any choice of the initial ellipsoid including x0, the system reachability domains Dk
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Fig. 1. Family of ellipsoids comprising the limiting reachability set.

approach the same compactum D∞ whose boundary is shown in Fig. 1 by the thin solid line. This
compactum is contained in the one-parameter family of ellipsoids E(0, Pγ), where Pγ is the solution
of the Lyapunov equation (9) for any fixed γ ∈ (ρ2

A , 1). Some ellipsoids of this family are shown
in Fig. 1 by the dashed lines. The trace-minimal (for V = I) ellipsoid from this family (bold line)
is E(0, P ) with the matrix P � diag{3.6797; 1.3727}. As can be seen from the figure, it is not an
optimal external estimate of the limiting reachability set D∞ among all ellipsoids comprising D∞.

3. ESTIMATE OF THE REACHABILITY SETS Dk AND D∞

To construct more precise ellipsoidal estimates, we make use of the following important re-
sult concerning approximation of the ellipsoid sum. Let AN be the set of all possible vectors

α = (α1, . . . , αN )T ∈ R
N such that all αi > 0 and

N∑
i=1

αi = 1.

Lemma 1. Let SN be the algebraic sum N of the ellipsoids E(ci, Qi) and the matrices Qi ≥ 0,
Qi �= 0 for all values of i = 1, . . . , N . Then,

(1) for any α ∈ AN , the ellipsoid E(c, P (α)) with the parameters

c =
N∑

i=1

ci, P (α) =
N∑

i=1

α−1
i Qi (10)

includes SN and
(2) the function ϕ(α) = fV (P (α)) = tr V P (α) is strictly convex on the simplex AN ; here, V > 0

is the weight matrix.

See the proof of the lemma in [7]. Its (1) was first formulated by Schweppe in his monograph [2].
We note that the trace-minimal ellipsoid in the family E(c, P (α)) generally needs not be minimal
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in the entire class of ellipsoids containing the sum SN . Nevertheless, for a “correct” choice of the
weight matrix V its distinction from the minimum one will be insignificant (see Section 5 below).
The following remark applies to the special case of the sum of two ellipsoids.

Remark 1. If N = 2, then the one-parameter family of ellipsoids E(c, P (α)) of (10) contains the
trace-minimal ellipsoid among the entire class of ellipsoids which contain the set SN . Therefore,
minimization in the scalar parameter γ = α1 of the convex function fV (P (α)) = tr V Q1/γ +
tr V Q2/(1 − γ) over the interval γ ∈ (0, 1) provides a trace-minimal ellipsoid containing SN .

For more detail on approximation of the sum of two ellipsoids see [5, 6, 9]. For N ≥ 2, we
consider the algebraic sum SN of the nondegenerate coaxial ellipsoids E(0, Qi) under the conditions
of Lemma 1. As the following lemma asserts, the ellipsoid that comprises the sum SN and is
minimum in the (corresponding) trace criterion also belongs to the family E(0, P (α)) (10) (for
ci ≡ 0).

Lemma 2. Let N ≥ 2 and the nondegenerate ellipsoids E(0, Qi), i = 1, . . . , N , be coaxial,
that is, all the transformed matrices Q̃i = UQiU

T be diagonal and have positive diagonal ele-
ments for some nondegenerate matrix U . We assume that V = UTU and introduce the vector
α = (α1, . . . , αN ) ∈ AN , simplex AN , and matrix function P (α) similar to Lemma 1. Then, the
ellipsoid E(0, P (α)) corresponding to the solution of the minimization problem

min
α∈AN

tr V P (α) = min
α∈AN

N∑
i=1

α−1
i tr V Qi, (11)

is minimum (by the same trace criterion tr V P ) also among all possible ellipsoids containing the

algebraic sum SN =
N∑

i=1
E(0, Qi).

The proof of the lemma is given in the Appendix.
Since according to (1) the reachability set Dk of system (1) is the sum of N = k + 1 ellipsoids

with the centers

d0 = Akc0, di = 0, i = 1, . . . , k (12)

and, correspondingly, the matrices

Q0 = AkP0(AT)k, Qi = Ak−iBBT(AT)k−i, i = 1, . . . , k, (13)

its external ellipsoidal estimate can be constructed directly by Lemma 1 by minimizing tr V P (α)
on the simplex AN , which leads to the following optimal values of the parameters αi :

αi = ( tr V Qi)
1/2

 k∑
j=0

( tr V Qj)
1/2

−1

. (14)

For these values,

tr V P (α) =

([
tr V AkP0(AT)k

]1/2
+

k−1∑
i=0

[
tr V AiBBT(AT)i

]1/2
)2

. (15)

As follows from lemma 1 and (1), (12), and (13), the resulting ellipsoid E(0, P (α)) contains the
reachability set Dk of system (1) for the initial x0 ∈ E(0, P0), P0 ≥ 0. As is corroborated by
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numerous examples, it provides a good external approximation of the set Dk for “correct” choice
of the weight matrix V . Additionally, for any predefined k ≥ 1, the matrix P (α) of this ellipsoid
can be calculated iteratively. One can readily see that this calculation of P (α) = P̂k obeys the
formulas

Wi = AWi−1A
T, i = 1, . . . , k, W0 = P0, (16)

Si = ASi−1A
T, µi = ( tr V Si)

1/2 , i = 1, . . . , k, S0 = BBT, (17)

νi = νi−1 + µi, i = 1, . . . , k, ν0 = ( tr V Wk)
1/2 , (18)

αi = µi/νk, i = 1, . . . , k, α0 = ν0/νk, (19)

P̂i = P̂i−1 + α−1
i Si, i = 1, . . . , k , P̂0 = α−1

0 Wk. (20)

The following theorem illustrates the limiting behavior of the matrix P̂k for k → ∞.

Theorem 2. Let the A be stable. Then, for any initial value P0 ≥ 0, the matrix P̂k determined
by the algorithm (16)–(20) coincides with P (α) (10), (14) and tends to the finite limit P̂∞ ≥ 0 for
k → ∞. At that,

P̂∞ =
∞∑

j=0

AjBBT(AT)j

α̂j
, (21)

where α̂j are as follows:

α̂j = [ tr V AjBBT(AT)j ]1/2

( ∞∑
i=0

[ tr V AiBBT(AT)i ]1/2

)−1

, (22)

and the trace

tr V P̂∞ =

 ∞∑
j=0

[
tr V AjBBT(AT)j

]1/2

2

. (23)

For a sufficiently large k, algorithm (16)–(20) is, therefore, an iterative method of approximation
of the limiting reachability set. Theorem 2 is proved in the Appendix on the basis of another
iterative representation of the matrix P (α) (10), (14) which is as follows. Let the sequence

Pi+1 =
APiA

T

γi
+

BBT

1 − γi
, i = 0, 1, . . . , k − 1, (24)

be given for some P0 ≥ 0. Here, the parameters γi ∈ (0, 1), i = 0, 1, . . . , k − 1. It follows from (24)
that

Pk =
AkP0(AT)k

γ0γ1 . . . γk−1
+

Ak−1BBT(AT)k−1

(1 − γ0)γ1 . . . γk−1
+

Ak−2BBT(AT)k−2

(1 − γ1)γ2 . . . γk−1

+ · · · + ABBTAT

(1 − γk−2)γk−1
+

BBT

1 − γk−1
, (25)

and, consequently, Pk = P (α) for the parameter vector α = (α0, . . . , αk)T ∈ Ak+1 defined by the
relations

α0 =
k−1∏
i=0

γi, αj = (1 − γj−1)
k−1∏
i=j

γi, j = 1, . . . , k. (26)
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Since they define the one-one relation between the hypercube (0, 1)k and the simplex Ak+1, choice
in algorithm (24) of the parameters γ0, . . . , γk−1 from the condition

(γ0, . . . , γk−1) = argmin
0<γ0,...,γk−1<1

tr V Pk (27)

leads to the same optimal matrix P (α) = Pk as that determined by the algorithm (16)–(20).

Lemma 3. For any P0 ≥ 0, solution of (27) is representable as

γi =
[ tr V Ak−iPi(AT)k−i]1/2

[ tr V Ak−iPi(AT)k−i]1/2 + [ tr V Ak−i−1BBT(AT)k−i−1]1/2
, i = 0, 1, . . . , k − 1, (28)

where the matrices Pi are recurrently recalculated by (24) beginning from P0. The resulting value
of Pk coincides with P (α) (10), (13), (14), as well as with the result P̂k of the algorithm (16)–(20):

Pk = P̂k = (tr V Pk)1/2

(
AkP0(AT)k

[ tr V AkP0(AT)k]1/2
+

k−1∑
i=0

AiBBT(AT)i

[ tr V AiBBT(AT)i ]1/2

)
. (29)

Lemma 3 is proved in the Appendix.
We note that method (24), (28) is unsuitable for recurrent use because each time when seeking

a new estimate at the next, (k + 1)st step one has to recalculate all the preceding values of the
parameters γ0, . . . , γk and matrices P1, . . . , Pk. For smaller k, however, this seems possible.

On the other hand, by means of (24) one can readily demonstrate that the external ellipsoidal
estimate E(0, Pγ ) of the set D∞, which is minimal by the trace criterion and is obtained from
Theorem 1, is always inferior in accuracy of approximation to the corresponding limiting esti-
mate E(0, P̂∞) of Theorem 2. Indeed, if one takes γi ≡ γ ∈ (ρ2

A, 1) in (24), then, by virtue of the
Lyapunov theorem, we get

Pγ = lim
k→∞

Pk, (30)

and since the minimum does not decrease with contraction of the admissible set,

tr V Pk ≥ tr V P̂k, (31)

where the matrix P̂k is the result of algorithm (16)–(20) or, which is the same, the algorithm (24),
(27). Hence, with regard for Theorem 2 we get the following result by passing to the limit for
k → ∞.

Theorem 3. Let the matrix A be stable and Pγ and P̂∞ be as defined in Theorems 1 and 2,
respectively. For any weight matrix V > 0, the following inequality is valid:

min
γ∈(ρ2

A,1)
tr V Pγ ≥ tr V P̂∞. (32)

4. LOCALLY OPTIMAL RECURRENT ALGORITHM

For the original system (1), a straightforward computational recurrent algorithm for ellipsoidal
estimation can also be constructed on the basis of Lemma 1 and (24) (see [5, 7]) by approximating
at each step the sum of only two ellipsoids. Indeed, we consider for some initial c0 and P0 ≥ 0 the
sequence of ellipsoids Ek = E(ck, Pk) with

ck+1 = Ack, Pk+1 =
APkA

T

γk
+

BBT

1 − γk
, k = 0, 1, 2, . . . , (33)
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where the parameter γk is the solution of the one-dimensional convex problem of optimization

γk = argmin
0<γk<1

tr V Pk+1. (34)

Then, Ek ⊇ Dk for any k = 1, 2, 3, . . . . As compared with the direct method (16)–(20), the recur-
rent algorithm (33), (34) requires straightforward computations. Moreover, according to Remark 1,
at each step it produces locally optimal ellipsoids. In the global sense, however, optimality as a
rule is not kept, and accuracy of the recurrent estimates is sometimes much inferior to the accuracy
of the direct nonrecurrent method (16)–(20).

We note that the centers of recurrent ellipsoids ck = Akc0 converge to zero for k → ∞. Therefore,
the asymptotics of these estimates depends completely on the behavior of their matrices.

We assume without loss of generality that the initial phase vector x0 of system (1) belongs to
the bounded ellipsoid E(0, P0), P0 ≥ 0 centered at zero. Solution of the minimization problem (34)
provides locally optimal parameters

γk =
( tr V APkA

T)1/2

( tr V APkAT)1/2 + ( tr V BBT)1/2
(35)

and enables one to set down explicitly the algorithm (33), (34):

Pk+1 =
αk + β

αk
APkA

T +
αk + β

β
BBT, (36)

where

αk =
√

tr V APkAT, β =
√

tr V BBT . (37)

At that, as follows from Lemma 1, E(0, Pk) ⊇ Dk, k = 1, 2, 3, . . . .

Lemma 4. The matrix sequence (36) with the coefficients (37) is bounded if and only if the
matrix A is stable.

Proof see in [11].
So, let the system matrix A be stable, that is, ρA < 1. Existence of a set of limiting points of

the sequence follows from its boundedness. We consider the limiting points of sequence (36) and
present the sufficient condition for its global convergence to the equilibrium point. Since P0 �= 0,
also Pk �= 0, ∀ k = 1, 2, 3, . . . . Then we assume that

Qk =
Pk√

tr V Pk
. (38)

Since tr V Pk+1 = (αk +β)2 follows from (36), (37), for the transformed matrix sequence we obtain
the following recurrent equation that better yields to examination:

Qk+1 = νkAQkA
T + C, νk =

(
tr V Qk

tr V AQkAT

)1/2

, (39)

where C = BBT/β ≥ 0, β �= 0. Transformation (38) establishes a one-one correspondence between
the nonnegatively definite matrices Pk and Qk of the sequences (36) and (39), respectively. Conse-
quently, their limiting behaviors are identical. In particular, according to Lemma 4, stability of the
matrix A is the necessary and sufficient condition for boundedness also of the sequence Qk. In what
follows, we consider the asymptotic characteristics of the transformed recurrent algorithm (39).
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4.1. Equilibrium

The equilibrium points of Eq. (39), if any, are the solutions of the equation

Q = νQAQAT + C, νQ =
(

tr V Q

tr V AQAT

)1/2

. (40)

Theorem 4. For any nonnegatively definite matrix C �= 0, there exists a unique solution of the
nonlinear matrix Eq. (40) among the nonnegatively definite matrices Q if and only if the matrix A
is stable. At that, the value of the parameter νQ lies within the interval 1 < νQ < 1/ρ2

A.

See the proof in the Appendix.
Therefore, the recurrent Eq. (39) has a single equilibrium point Q∗ that can be determined by

numerical solution of Eq. (40). Subsequent application of the transformation inverse to (38), that
is, the passage to the matrices P , leads to calculation of the matrix P ∗ of the equilibrium ellipsoid
containing the limiting system reachability set D∞. It would be of definite interest to study this
equilibrium point for local stability, but it meets with some difficulties, and we omit it here and
focus on global convergence.

4.2. Convergence

We formulate the sufficient convergence conditions for the recurrent algorithm (39) whose validity
is based on the already established uniqueness of the equilibrium point and the proof of lack of
other limiting points of the sequence {Qk}.

Lemma 5. Let the matrix C ≥ 0, C �= 0. For any stable matrix A ∈ R
n×n, there will be a weight

matrix V = UTU > 0 such that its transformed matrix Ã = UAU−1 has the greatest singular value
σmax(Ã ) < 1, and the solution Q = Q∗ of Eq. (40) satisfies the inequality

νQ∗ ≤ σ−2
max(Ã ). (41)

Theorem 5. Let the matrix A be stable, C ≥ 0, C �= 0, and the weight matrix V = UTU > 0 be
chosen so that the transformed matrix Ã = UAU−1 has σmax(Ã ) < 1 and the solution Q = Q∗ of
the Eq. (40) satisfies inequality (41). Then, for an arbitrary initial Q0 ≥ 0 the matrix sequence {Qk}
generated by algorithm (39) converges to the equilibrium point Q∗ which is uniquely defined by the
Eqs. (40).

Lemma 5 and Theorem 5 are proved in the Appendix. Therefore, the locally optimal algo-
rithm (39) and, consequently, algorithm (36), (37) in the original variables generate a converging
sequence of the ellipsoidal external estimates of the sets Dk containing D∞ at the limit for k → ∞.
It can be seen, however, from relations (9) and (36) that the limiting matrix P∞ belongs to the
family {Pγ} from Theorem 1, and, therefore, generally speaking the ellipsoid E(0, P∞) is a less
precise estimate of the set D∞ as compared with the optimal ellipsoid E(0, Pγ), that is,

lim
k→∞

tr V Pk ≥ min
γ∈(ρ2

A
,1)

tr V Pγ . (42)

We note that only substantially more rigid sufficient conditions for convergence of the ellipsoidal
estimates are known from the literature for similar problems. For the continuous-time dynamic
systems, for example, Chernous’ko [5] studied asymptotic behavior of the approximating ellipsoids
only in the class of diagonal matrices, which enables one to decompose the original system into n
simpler subsystems obeying scale equations. Conditions for local convergence of ellipsoids in the
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neighborhood of the equilibrium points were given in [13, 14]. Therefore, the results of Theorem 5
are stronger than those mentioned above.

Convergence of the recurrent ellipsoidal algorithm (39) and, consequently, of (36) is another
attractive feature of the trace criterion when used to determine the minimum-size ellipsoid as
compared with other criteria such as the minimum-size criterion (see [11]).

5. CHOICE OF THE WEIGHT MATRIX

Let us consider for simplicity a special case where the matrix A is not degenerate and has n
different eigenvalues. Then (see, for example, [16]), there exists a real similarity transformation
Ã = UAU−1 driving A to the block-diagonal form. Namely, for the matrix Ã, only the diagonal
1 × 1 blocks of real eigenvalues λj(A) and 2 × 2 blocks corresponding to the complex-conjugate
pairs of nonreal eigenvalues λj(A) = |λj(A)| exp{cos ϕj ± i sin ϕj} and representable as

|λj(A)|
(

cos ϕj sinϕj

− sin ϕj cos ϕj

)

are nonzero. Hence, an arbitrary kth degree of Ã k, k ≥ 1, repeats the block-diagonal structure of
the matrix Ã, the matrix Ãk(ÃT)k being diagonal. Namely,

Ãk(ÃT)k = diag
{
|λ1(A)|2k, . . . , |λn(A)|2k

}
. (43)

We also assume that the transformed matrix B̃ = UB is such that the decomposition

B̃B̃ T =
m∑

k=0

νkÃ
k(ÃT)k (44)

is valid for some m ≥ 0 and νk ∈ R, k = 0, . . . ,m. Let in addition the matrix of the ellipsoid
E(0, P̃0) (initial states in the transformed space x̃ = Ux) also admit representation (44), that is,
the decomposition

P̃0 =
l∑

k=0

µkÃ
k(ÃT)k (45)

be valid for some l ≥ 0 and νk ∈ R, k = 1, . . . , l. We note, that by virtue of (43) the conditions (44),
(45) necessarily mean that the matrices B̃B̃ T and P̃0 are diagonal. Therefore, according to (13),
diagonal are also the matrices

Q̃0 = ÃN P̃0(ÃT)N , Q̃k = Ã kB̃B̃ T(ÃT)k, k ≥ 1,

of the ellipsoids that are the addends of the reachability set D̃N−1, and in the transformed space
the ellipsoids E(0, Q̃k) are coaxial.

According to Lemma 2, the aforementioned situation is most favorable for using algorithm (16)–
(20) of ellipsoidal estimation of the reachability set D̃N−1 which is a sum of N coaxial ellipsoids.
At that, the weight matrix is defined by the aforementioned matrix of transformation of U accord-
ing to V = UTU , and application of the trace criterion fI(P̃ ) = tr P̃ to the transformed phase space
is equivalent to using the weighted-trace criterion fV (P ) = tr V P in the original phase space. We
note that in algorithm (16)–(20) all computations are carried out in the original phase space, and
no transformation is done. At that, by virtue of Theorem 2, the algorithm leads to an ellipsoid that
is optimal by the weighted-trace criterion among all ellipsoids containing the reachability set DN−1.
Naturally, V is independent of N and is defined only by the matrix A.
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If condition (44) is not satisfied, then for the above choice of the weight matrix V one cannot
assert that the ellipsoid obtained by algorithm (16)–(20) is globally optimal. The same is valid also
for condition (45) whose role, however, is not so important for sufficiently great N and vanishes
at all at the limit for N → ∞. At the same time, accuracy of the ellipsoid estimates remains
sufficiently high and, as a rule, is much better than in the case of V = I.

For an arbitrary (stable) matrix A, there always exists the real similarity transformation Ã =
UεAU−1

ε driving A to the block-diagonal form with any predefined precision ε > 0 [16]. In this case,
it is recommended to take the weight matrix equal to V = UεU

T
ε . This general recommendation

is applicable also to the locally optimal algorithm (39) because choice of a sufficiently small ε > 0
secures satisfaction of the conditions of Theorem 5 guaranteeing convergence of the generated
ellipsoids.

6. NUMERICAL EXAMPLES

We begin with a simple example where the weight identity matrix V = I can be naturally taken
to construct the recurrent estimates by the trace criterion.

Example 2. Let the following dynamic linear system with the matrices

A =

(
0.2 0.3
0 0.8

)
and B =

(
1 0
0 1

)
.

be given. The matrix ATA is stable (its spectral radius is ρATA = 0.7352); therefore, we take V = I.
Lemma 5 readily enables one to verify whether condition (41) is satisfied. The ellipsoids E(0, Pk)
generated by the locally-optimal algorithm (36) converge to the limiting one with the matrix

P∞ �
(

9.4400 10.4167
10.4167 26.1727

)
under any initial conditions. In particular, Fig. 2 depicts asymptotic behavior of these estimates
for the case where the initial ellipsoid is a unit circle. We note that the limiting ellipsoid E(0, P∞)
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Fig. 2. Convergence of the estimates for ρATA < 1 and V = I .
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(thin solid line) approximates very well the limiting reachability set D∞ whose boundary is shown
by bold line. At that, it actually does not differ from the minimum ellipsoid E(0, P ) (point line in
Fig. 2) belonging to the one-parameter family (9) obtained by Theorem 1. In the case at hand,

P �
(

9.5761 9.5182
9.5182 25.0540

)
,

and tr P∞ = 35.6127 and tr P = 34.6301. Therefore, for the case of the stable matrix ATA one can
assume that the recurrent algorithm (36) is a simple and effective iterative method of determining
the external ellipsoidal estimate of the limiting reachability set D∞ of the dynamic system (1).

Computational experiments demonstrate that for V = I (36) seems to converge also under a
simpler requirement of stability of the matrix A. However, we still cannot prove this fact. On the
other hand, as will be illustrated by the following example, its practical value would be insignificant
because for ρ

ATA
 1 the size of the limiting ellipsoid (for V = I) turns out to be unsatisfactory

as compared with the limiting reachability set D∞.

Example 3. Let us consider

A =

(
0.2 5
0 0.8

)
and B =

(
1 0
0 1

)
.

The system matrix A is stable, but has an appreciable off-diagonal element, and on this account
ρ

ATA
 1. The limiting reachability set for this case is shown by bold line in Fig. 3. Computations

demonstrate that for V = I and any initial ellipsoid E(0, P0), P0 ≥ 0, the recurrent algorithm (36)
converges to the limiting ellipsoid E(0, P∞) with the matrix

P∞ �
(

5.8764 0.7680
0.7680 0.1578

)
× 103.

The ellipsoid E(0, P∞) is shown by thin solid line in Fig. 3. One can see that this estimate
is very overstated in comparison with the trace-minimal ellipsoid E(0, P ) (point line) obtained
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Fig. 3. Behavior of estimates for ρATA � 1 and V = I .
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Fig. 4. Behavior of estimates for ρATA � 1 and V = UUT (46).

by Theorem 1 and the ellipsoid E(0, P̂∞) (dashed line) where the matrix P̂∞ was taken from
Theorem 2.

Therefore, if ρA � ‖A‖, that is, the spectral matrix norm exceeds very much (a few times) its
spectral radius, then for great k it is not advisable to do external approximation of the reachability
sets of the dynamic system by the recurrent algorithm (36) with the weight identity matrix V = I.

Example 4. Under the conditions of Example 3, all calculations are repeated for the weight
matrix

V =

(
1.0 −8.3333

−8.3333 139.8889

)
= UTU and U =

(
1.0 −8.3333
0 8.3931

)
. (46)

At that, the matrix U drives A to the diagonal matrix Ã = UAU−1 = diag{0.2; 0.8}. In Fig. 4,
the set D∞ and its corresponding ellipsoids are denoted as their counterparts in Example 3. One
can see how strongly the accuracy of estimation is improved—in particular, by the locally-optimal
algorithm (36)—owing to correct choice of the weight matrix V .

7. CONCLUSIONS

Proposed was a one-parameter family of external ellipsoidal estimates of the limiting reachability
set for the stable dynamic linear system, the optimal estimate being determined by solving the
one-dimensional convex optimization problem. Asymptotic behavior of the recurrent estimation
algorithms was studied for the discrete-time systems. The sufficient condition for convergence of
the trace-criterion locally optimal recurrent algorithm was proved. As was shown, the estimates by
this method may be very overstated. In this connection, it is suggested to make use of the trace
criterion with a weight matrix which, being correctly chosen, can provide more effective ellipsoidal
approximations of the reachability domains.
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APPENDIX

Proof of Theorem 1. It follows from (1) that the support function of the limiting reachability
set D∞ is as follows:

ϕ∞(d) .= sup
x∈D∞

dTx =
∞∑
i=0

‖(AiB)Td‖, d ∈ R
n. (A.1)

Therefore, D∞ is a set of points x ∈ R
n satisfying the inequality dTx ≤ ϕ∞(d) for any vector

d ∈ R
n. Hence, in particular, it is a closed convex set symmetrical to the origin.

Let us consider the ellipsoid E(0, Pγ) with a matrix satisfying the Lyapunov equation (9) for
any γ ∈ (ρ2

A, 1). Since the matrix A/
√

γ is stable, by the Lyapunov theorem this equation has
unique solution Pγ ≥ 0 because BBT ≥ 0. Additionally,

Pγ =
∞∑

k=0

AkBBT(Ak)T

γk(1 − γ)
.

Then, the support function of the ellipsoid E(0, Pγ) is as follows:

ϕE(0,Pγ)(d) =
√

dTPγ d =

( ∞∑
k=0

dTAkBBT(Ak)Td

γk(1 − γ)

)1/2

≥
(

inf
{αk}

∞∑
k=0

‖(AkB)Td‖2

αk

)1/2

=
∞∑

k=0

‖(AkB)Td‖ = ϕ∞(d),

where inf is taken over all sequences {αk}k≥0 of the positive numbers satisfying the normalization

condition
∞∑
i=0

αi = 1. We note that αk = (1 − γ)γk is one of such sequences. Therefore, the inequal-

ity ϕE(0,Pγ)(d) ≥ϕ∞(d) for the support functions is valid for any vector d ∈ R
n and any γ from the

interval (ρ2
A, 1). Consequently, E(0, Pγ) ⊇ D∞.

Now, since tr V AkBBT(Ak)T ≥ 0 and this inequality is strict for some k ≥ 0, the function

ϕ(γ) .= tr V Pγ =
∞∑

k=0

tr V AkBBT(Ak)T

γk(1 − γ)

is the sum of the strictly convex functions over the interval (ρ2
A, 1). Indeed,

1
γk(1 − γ)

=
1

1 − γ
+

k∑
j=1

γ−j ,

and the functions (1−γ)−1 and γ−j are strictly convex for any j ≥ 1. Consequently, ϕ(γ) is strictly
convex, which completes the proof.

Proof of Lemma 2. We assume without loss of generality that the matrices Qi are diagonal
with positive diagonal elements and U and V are the identity matrices (because transformation (6)
of the state space x̃ = Ux with the original matrix U leads namely to this case). The support
function ϕP (d) of the nondegenerate ellipsoid E(0, P ) is as follows

ϕP (d) = max
x∈E(0,P )

xTd =
√

dTPd, d ∈ R
n, (A.2)
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and for the diagonal matrices P we get for d = en = (1, . . . , 1)T that ϕP (en) =
√

tr P . Similar to
(A.1), by virtue of diagonality of Qi the support function of the sum SN for d = en provides

ϕS(en) =
N∑

i=1

√
dTQid =

N∑
i=1

√
tr Qi. (A.3)

In the problem of minimization of the trace tr P on the set of all ellipsoids E(c, P ) including
the sum SN of the ellipsoids E(0, Qi) with the diagonal matrices Qi, one can readily see that
it suffices to confine oneself to the central ellipsoids with the diagonal matrices P . Indeed,
each of the ellipsoids E(0, Qi) is invariant to any (orthogonal) transformation x̃ = U±x with
U± = diag {±1, . . . ,±1}; consequently, their sum SN features the same invariance. Additionally,
tr U±PU T

± = tr P for any matrix P by virtue of orthogonality of U±. Therefore, being unique
(see [7, 10]), the minimum ellipsoid E(c, P ) features the same invariance and, consequently, the
vector c and the matrix P satisfy the equations

c = U±c, P = U±PU T
± (A.4)

for any of the 2n matrices U±. Hence, c = 0, and P is a diagonal matrix.
Taking into consideration the aforementioned, we assume that the vector c = 0 and consider the

diagonal matrices P > 0 for which

ψ(P ) = min
d∈Rn

(ϕP (d) − ϕS(d)) ≥ 0. (A.5)

Then,

min
ψ(P )≥0

tr P ≥ min
ϕP (en)≥ϕS(en)

tr P = ϕ2
S(en) =

(
N∑

i=1

√
tr Qi

)2

(A.6)

in the class of diagonal matrices P . But the right-hand side of (A.6) coincides with the minimum
in (10):

min
α∈AN

tr P (α) =

(
N∑

i=1

√
tr Qi

)2

. (A.7)

With regard for Lemma 1, the proof is completed.
Proof of Theorem 2. Let the matrices P̂k and Pk be obtained by algorithms (16)–(20) and (24),

(27), respectively. The sequences of the matrices P̂k = Pk are bounded because

tr V Pγ ≥ lim sup
k→∞

tr V P̂k = lim sup
k→∞

tr V Pk. (A.8)

follows from relations (30), (31) and Lemma 3 for an arbitrary γ ∈ (ρ2
A, 1). We consider now

expression (15)

( tr V Pk)
1/2 =

[
tr V AkP0(AT)k

]1/2
+

k−1∑
i=0

[
tr V AiBBT(AT)i

]1/2
.

The first term in its right-hand side tends to zero for k → ∞ because the matrix A is stable. The
second term in the right-hand side is a series of positive elements whose value increases monotoni-
cally with k and is bounded. Hence convergence follows for tr V Pk :

( tr V Pk)
1/2 −→

k→∞

∞∑
i=0

[
tr V AiBBT(AT)i

]1/2
. (A.9)
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To prove convergence of the matrices Pk we set down (29) as

Pk =
AkP0(AT)k

α0
+ ( tr V Pk)1/2

k−1∑
i=0

AiBBT(AT)i

[ tr V AiBBT(AT)i ]1/2
, (A.10)

where α0 = ( tr V AkP0(AT)k)1/2/( tr V Pk)1/2. Its first term AkP0(AT)k/α0 is a nonnegatively
definite matrix that with k tends to the zero matrix since the trace

tr V (AkP0(AT)k) /α0 =
√

tr V Pk · tr (AkP0(AT)k) −→
k→∞

0,

because Ak → 0 and (AT)k → 0 for k → ∞. To demonstrate convergence of the matrices Pk, it now
suffices to prove convergence of the sums appearing in the right-hand side of (A.10). Yet these sums
do not decrease monotonically and are bounded; consequently, they converge. Therefore, we proved
convergence of Pk to the finite limit

P̂∞ =

( ∞∑
i=0

[
tr V AiBBT(AT)i

]1/2
) ( ∞∑

i=0

AiBBT(AT)i

[ tr V AiBBT(AT)i ]1/2

)
,

which coincides with (21), (22). Hence, the expression for the trace

tr V P̂∞ =

( ∞∑
i=0

[
tr V AiBBT(AT)i

]1/2
)2

< ∞

follows immediately, which completes the proof.
Proof of Lemma 3. The equalities Pk = P̂k = P (α) were obtained immediately before the

formulation of this lemma, and (29) stems directly from (10) and (13)–(15). Let us prove (28).
One can minimize (27) by passing consecutively all γi in the reverse order, that is, first by γk−1,

then by γk−2, and so on. Indeed, the matrix Pk from (3) is representable as

Pk =
APk−1A

T

γk−1
+

BBT

1 − γk−1
,

where Pk−1 is no more dependent on γk−1. Minimization of trV Pk by γk−1 provides a unique
solution (by virtue of convexity, see [7, 9]), the solution being determined analytically. We get

min
0<γ0,...,γk−2,γk−1<1

tr V Pk =

[(
min

0<γ0,...,γk−2<1
tr V APk−1A

T
)1/2

+ β0

]2

, (A.11)

where β0 =
√

tr V BBT, and the optimal value

γk−1 =

(
tr V APk−1A

T
)1/2

( tr V APk−1AT)1/2 + ( tr V BBT)1/2
.

Now, by representing

APk−1A
T =

A2Pk−2(AT)2

γk−2
+

ABBTAT

1 − γk−2

and minimizing tr V APk−1A
T with respect to γk−2, we similarly obtain

min
0<γ0,...,γk−3,γk−2<1

tr V APk−1A
T =

[(
min

0<γ0,...,γk−3<1
tr V A2Pk−2(AT)2

)1/2

+ β1

]2

, (A.12)
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where β1 =
√

tr V ABBTAT, and the optimal value

γk−2 =

(
tr V A2Pk−2(AT)2

)1/2

( tr V A2Pk−2(AT)2)1/2 + ( tr V ABBTAT)1/2
.

The remaining γk−3, . . . , γ0 are consecutively determined in the same manner. Consequently, for
i = 0, 1, . . . , k − 1 all γi satisfy (28), which proves the lemma.

Proof of Theorem 4. It suffices to carry out the proof for the case of the weight identity
matrix V = I. Indeed, the formulation of this theorem comes (equivalently) namely to this case
if one passes to the transformed matrices Ã = UAU−1, B̃ = UB, and P̃ = UPUT, where the
nondegenerate matrix of the transformation U satisfies V = UTU , see (4)–(7). Therefore, we
assume below that V = I.

Let us consider the scalar equation ν2 = f(ν) with f(ν) = tr Q(ν)
tr AQ(ν)AT , where Q(ν) is the solution

of the Lyapunov equation Q = νAQAT +C for some fixed parameter ν such that 0 < ν < 1/ρ(A)2.
We put down

Q = νAQAT + C,
dQ

dν
= νA

dQ

dν
AT + AQAT,

tr Q = ν tr AQAT + tr C, tr
dQ

dν
= ν tr

(
A

dQ

dν
AT

)
+ tr AQAT

and note that the matrices Q(ν) and dQ
dν are nonnegatively definite for 0 < ν < 1/ρ(A)2.

Direct: Let Eq. (40) have a unique solution Q ≥ 0. Let us assume the opposite: ρA ≥ 1. Then,
for the Lyapunov equation Q = νAQAT + C with C ≥ 0 to have a nonnegatively definite solution
for a fixed ν, it is necessary and sufficient that 0 < ν < 1/ρ2

A ≤ 1.

However, for any ν such that 0 < ν ≤ 1, the function f(ν) = tr Q(ν)
tr AQ(ν)AT = ν+ tr C

tr AQ(ν)AT > ν > ν2

and Eq. (40) has no solution, which contradicts the condition. Therefore, ρA < 1.
Inverse: Let the matrix A be stable. Then, the Lyapunov equation Q = νAQAT + C has a

unique nonnegatively definite solution for any fixed value of ν from the interval 0 < ν < 1/ρ2
A. Let

us consider the functions f(ν) and ν2 over this interval and prove uniqueness of the intersection
point of their graphs. As was shown above, f(ν) > ν2 on 0 < ν ≤ 1. Therefore, solutions of (40)
may be only on 1 < ν < 1/ρ2

A. For ν = 1, the function f(ν) = ν + tr C
tr AQ(ν)AT > 1. On the other

hand, limν→1/ρ2
A
−0 f(ν) = limν→1/ρ2

A
−0

(
ν + tr C

tr AQ(ν)AT

)
= 1/ρ2

A, since at that tr AQ(ν)AT tends
to infinity. Therefore, limν→1/ρ2

A
−0 f(ν) < ν2|ν=1/ρ2

A
= 1/ρ4

A. Hence, f(ν) and ν2 have intersection
points over this interval. We consider further the derivative

d

dν
f(ν) =

d

dν

(
tr Q(ν)

tr AQ(ν)AT

)
=

1
( tr AQAT)2

{
tr

dQ

dν
tr AQAT − tr Q tr (A

dQ

dν
AT)

}
=

1
( tr AQAT)2

{(
ν tr (A

dQ

dν
AT) + tr AQAT

)
tr AQAT − tr Q tr (A

dQ

dν
AT)

}
=

1
( tr AQAT)2

{(
ν tr AQAT − tr Q

)
tr (A

dQ

dν
AT) + ( tr AQAT)2

}

=
1

( tr AQAT)2

{
− tr C tr (A

dQ

dν
AT) + ( tr AQAT)2

}
= 1 − tr C

tr (AdQ
dν AT)

( tr AQAT)2
< 1.

Consequently, the difference ν2 − f(ν) will be here a monotone function because

d

dν

(
ν2 − f(ν)

)
= 2ν − d

dν

(
tr Q(ν)

tr AQ(ν)AT

)
> 2ν − 1 > 0
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for all ν > 1/2. Consequently, uniqueness of the intersection point of the functions ν2 and f(ν), as
well as of the solution of Eq. (40) was demonstrated, which proves the theorem.

Proof of Lemma 5. It is common knowledge (see, for example, [16]) that for any ε > 0 there
exists a nondegenerate real matrix of similarity transformation U for which ρA > σmax(Ã ) − ε.
In particular, if all eigenvalues λi(A) of the matrix A are simple, that is, of multiplicity 1, it is
possible to provide ε = 0 by reducing the matrix A to the real block-diagonal form such that
ÃTÃ = diag{|λ1(A)|2, . . . , |λn(A)|2} and, consequently, ρA = σmax(Ã ). In the general case, ε > 0
may be made arbitrarily small. Therefore, for a stable matrix A, one can both make the matrix ÃTÃ
stable and satisfy inequality (41) with regard for Teorem 4, which proves the lemma.

To prove Theorem 5, we need some auxiliary results.

Lemma A.1. Let A, Q = QT, and Q0 = QT
0 be real (n×n) matrices and the parameter β ≥ tr Q0,

the matrices A and Q0 being fixed. Then, for all Q ≥ Q0 such that tr Q = β, valid is the inequality

tr AQAT ≤ tr AQ0A
T + (β − tr Q0)σ2

max(A) (A.13)

which turns into equality for

Q = Q0 + (β − tr Q0)Hdiag{1, 0, . . . , 0}HT. (A.14)

Here, H is an orthogonal matrix driving the symmetrical matrix ATA to the diagonal form where
the element (1, 1) is the greatest eigenvalue, that is,

HT(ATA)H = diag{λ1, . . . , λn}, λ1 = σ2
max(A). (A.15)

Proof. The case of β = tr Q0 is trivial because the admissible set of matrices Q consists of a
single point Q = Q0; therefore, we assume below that β > tr Q0. We change variables

Z = Q − Q0 (A.16)

and make use of the theory of duality of the problems of convex programming (see, for example,
[17]). Since tr AZAT = 〈ATA,Z〉 and tr Z = 〈I, Z〉, for β0 = β − tr Q0 > 0 we get that

max
tr Z=β0

Z≥0

tr AZAT = min
λI≥ATA

β0 λ = β0 σ2
max(A). (A.17)

We obtain (A.13) by the inverse replacement (A.16). The matrix (A.14) satisfies the constraints
Q ≥ Q0 and tr Q = β, and its substitution into the left-hand side of inequality (A.13) rearranges
it in equality, which proves the lemma.

Corollary A.1. In the conditions of Lemma A.1, the inequality (A.13) assumes for Q0 = 0 the
form

tr AQAT ≤ σ2
max(A) tr Q, ∀Q ≥ 0. (A.18)

Corollary A.2. In the conditions of Lemma A.1, for β > 0

max
tr Q≤β
Q≥Q0

tr AQAT

tr Q
=

tr AQ0A
T + (β − tr Q0)σmax(A)

β
. (A.19)
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Proof. According to inequality (A.18), the right-hand side of (A.19), which, by virtue of
Lemma A.1, is the maximum of tr AQAT/ tr Q for all Q ≥ Q0 subject to the condition tr Q = β, is
a monotonically nondecreasing function of the parameter β > 0 from which (A.19) follows directly,
thus proving Corollary A.2.

We denote by Q∞ the set of limiting points of all sequences {Qk}k≥0 generated by the recurrent
algorithm (39) subject to the condition Q0 ≥ 0, and introduce the functions g(·) : Rn×n

+ → R+

g(Q) =
(

tr Q

tr AQAT

)1/2

, Q = QT ≥ 0, Q �= 0, (A.20)

and Q(·) : [0, ρ−2
A ) → Rn×n

+ as the solution of the matrix Lyapunov equation

Q(ν) = νAQ(ν)AT + C, 0 < ν < ρ−2
A , (A.21)

that is,

Q(ν) =
∞∑

k=0

νkAkC(AT)k. (A.22)

Lemma A.2. Let σmax(A) < 1 and the set of all limiting points Q∞ ⊆ Q1, where

Q1 =
{
Q = QT | Q ≥ X1, tr Q ≤ τ1

}
, (A.23)

and the parameters X1 and τ1 satisfy the conditions X1 = XT
1 > 0 and tr X1 ≤ τ1 ≤ +∞. Then,

Q∞ ⊆ Q2, where

Q2 =
{
Q = QT | Q ≥ X2, tr Q ≤ τ2

}
, (A.24)

at that,

X2 = Q(ν∗), τ2 =
ν∗

ν∗ − 1
tr C, (A.25)

ν∗ = inf
Q∈Q1

g(Q) (A.26)

and

λ−1/2
max

(
ATA

)
≤ ν∗ ≤ g(Q∗) = ν∗. (A.27)

Proof. By definition, the set Q∞ contains at least one point—namely, the equilibrium point Q∗

of the recurrent algorithm (39)—which is the unique root of Eq. (40). Therefore, the inequality
ν∗ ≤ g(Q∗) = ν∗ providing the right-hand inequality in (A.27) by virtue of Theorem 2 follows
from (A.26). The left-hand inequality in (A.27) is a direct consequence of (A.18). Now, we prove
(A.24), (A.25).

By iterating Eq. (39) and taking into account that νk = g(Qk) and, consequently,

lim inf
k→∞

νk ≥ ν∗, (A.28)

we obtain from the monotonicity of (A.22) in ν that for any limiting point Q∞ of an arbitrary
sequence {Qk} generated by algorithm (A.22) the following inequality is true:

Q∞ ≥ Q(ν∗) = X2. (A.29)
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The difference equation

tr Qk+1 = ν−1
k tr Qk + tr C, k = 1, 2, . . . , (A.30)

follows now from (39). The condition for asymptotic stability

lim sup
k→∞

ν−1
k ≤ (ν∗)

−1 ≤
(
σ2

max(A)
)1/2

< 1 (A.31)

is satisfied for it, which makes valid the upper bound

lim sup
k→∞

tr Qk ≤ tr C

1 − 1/ν∗
= τ2. (A.32)

Consequently, also tr Q∞ ≤ τ2. The lemma is proved by virtue of arbitrariness of Q∞ ⊆ Q2.
Proof of Theorem 5. As in the proof of Theorem 4, the case of an arbitrary weight matrix

V > 0 is reduced without loss of generality to the case of the identity matrix V = I which is
examined below to simplify calculations.

We use repeatedly Lemma A.2 to construct a monotonically nonincreasing sequence of the sets
Q(i), i = 1, 2, . . . , containing the set Q∞ of all limiting points of all sequences {Qk}k≥0 generated
by the recurrent algorithm (39) under an arbitrary initial condition Q0 ≥ 0. Since Qk ≥ C for
all k ≥ 1, in (A.23) one can take X1 = C, τ1 = +∞. For each i ≥ 1, we assume consecutively,
beginning from i = 1, that in (A.23) Q(i) = Q1 and from (A.24) obtain Q(i + 1) = Q2 ; we also
denote the corresponding ν∗ in (A.26) by ν∗(i):

ν∗(i) = inf
Q∈Q(i)

g(Q). (A.33)

By construction, Q(2) ⊆ Q(1), and, consequently, ν∗(2) ≥ ν∗(1). From (A.25) of ν∗, we obtain
consecutively Q(i + 1) ⊆ Q(i) and ν∗(i + 1) ≥ ν∗(i) for all i ≥ 1 by virtue of the monotone
dependence of X2 and τ2 . Therefore, by passing to the limit for i → ∞, we obtain the finite limit
ν∞ = limi→∞ ν∗(i) ≤ ν∗, and from (A.24)–(A.26)

Q∞ ⊆
∞⋂
i=1

Q(i) = {Q = QT | Q ≥ X∞, tr Q ≤ τ∞}, (A.34)

X∞ = Q(ν∞), τ∞ =
ν∞

ν∞ − 1
tr C, (A.35)

where

ν∞ =
(

τ∞
tr AX∞AT + (τ∞ − tr X∞)σ2

max(A)

)1/2

(A.36)

with regard for (A.33) and Corollary 2 to Lemma A.1. By means of direct substitution one can
easily ascertain (with regard for (39), (A.30) and the definition of the equilibrium point Q∗) that
the equation system (A.35), (A.36) has solution

X∞ = Q∗, τ∞ = tr Q∗, ν∞ =
(

tr Q∗

tr AQ∗AT

)1/2

. (A.37)

(We note that no other solution can exist if tr X∞ = τ∞ because the equation system (A.35), (A.36)
becomes equivalent to (40) according to Theorem 2.) Now, it suffices to demonstrate uniqueness
of this solution if tr X∞ ≤ τ∞ because then the fact that the set of limiting points is a one-point
set, that is, Q∞ = {Q∗}, follows from (A.34) and the equality tr X∞ = τ∞. We note that, as
was already observed above, the condition tr X∞ ≤ τ∞ is equivalent to the inequality ν∞ ≤ ν∗ by
virtue of monotonicity of the functions trQ(ν) and τ(ν) and the fact that τ(ν) = tr Q(ν) only for
ν = ν∗.
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By assuming for brevity that ν = ν∞, λ = σ2
max(A) and denoting by F (ν) the function obtained

in the right-hand side of (A.36), we eliminate the variables X∞ and τ∞ from the system (A.35),
(A.36). The resulting equation with one unknown ν after simple transformations taking into account
the Lyapunov equation (A.21) can be rearranged equivalently in

F−2(ν) − ν−2 =
(
λ − ν−1

) (
1 −

(
1 − ν−1

) tr Q(ν)
tr C

)
. (A.38)

Therefore, the roots of the equation F (ν) = ν can arise only if one of the factors in the right-hand
side of (A.38) vanishes. The second factor can be zero only if ν = ν∗, and the first factor has a
unique root ν = 1/λ which by the condition of this theorem does not lie to the left of the point ν∗,
which completes the proof.
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