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Abstract

In this paper, we study “complete instability” of interval polynomials, which is the counterpart of classical robust stability. That is, the
objective is to check if all polynomials in the family are unstable. If not, a subsequent goal is to find a stable polynomial. To this end, we
first propose a randomized algorithm which is based on a (recursive) necessary condition for Hurwitz stability. The second contribution of this
paper is to provide a probability-one estimate of the volume of stable polynomials. These results are based on a combination of deterministic
and randomized methods. Finally, we present two numerical examples and simulations showing the efficiency of the proposed methodology
for small and medium-size problems.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider an interval polynomial of the form

p(s, k) = k0 + k1s + k2s
2 + · · · + kns

n, (1)

where ki ∈ [k−
i , k+

i ], k−
i > 0, i = 0, 1, . . . , n. The celebrated

theorem of Kharitonov, see [8], states that p(s, k) is Hurwitz
if and only if four specific vertex polynomials are Hurwitz.

We now turn our attention to the design counterpart of this
result, which has been called the complete instability problem,
see [12]. The jargon “one-in-a-box” problem has been also used
within the parametric stability community to denote it, see, for
instance, [2].

To be more precise, we pose the following question: Is the
interval polynomial completely unstable or there exists at least
one Hurwitz polynomial in the family p(s, k)? If the answer
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to this question is affirmative, then the objective is to find such
a Hurwitz polynomial. The one-in-a-box problem is a special
case of fixed-order stabilization and static output feedback, and
is deemed to be NP-hard even though a definitive assessment
is presently not known. Negative results regarding the number
of high-dimensional faces of the hyperrectangle

K
.= {k : ki ∈ [k−

i , k+
i ], i = 0, 1, . . . , n}

required to be checked have been shown in [12]. In [3], a
useful parameterization of stable polynomials is given. This
parameterization is based upon a specific construction that leads
to fixed-order proper controllers for unity feedback systems.

To evidence the difficulty of this problem, in [11] it is shown
that, for a polynomial of order n�3 with coefficients restricted
in the interval [0, 1], the volume of stable polynomial Vstab is
bounded by

Vstab � 1

((n + 1)/2)! .

Following previous research on mixed methods for fixed-
order controller design, see e.g. [6], and in the spirit of
the randomized algorithms literature, see, for instance, [14]
and references therein, we propose a mixed deterministic/
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randomized approach to solve the one-in-a-box problem. We
assume that the odd coefficients of p(s, k) are random vari-
ables distributed in the intervals k2i+1 ∈ [k−

2i+1, k
+
2i+1], i =

0, 1, . . . , no, where no = (n − 1)/2 if n is odd or no = n/2 − 1
if n is even. That is, letting

ko
.= [k1, k3, . . . , k2no+1]T,

we define the odd hyperrectangle

Ko
.= {ko : k2i+1 ∈ [k−

2i+1, k
+
2i+1], i = 0, 1, . . . , no}.

We also assume that the even coefficients of p(s, k) vary in the
intervals k2i ∈ [k−

2i , k
+
2i], i = 0, 1, . . . , ne, where ne = n/2 if n

is even or ne = (n − 1)/2 if n is odd. Formally, letting

ke
.= [k0, k2, . . . , k2ne ]T,

we define the even hyperrectangle

Ke
.= {ke : k2i ∈ [k−

2i , k
+
2i], i = 0, 1, . . . , ne}.

In this case, no probabilistic assumption is made or used for
the coefficients ke.

For the odd coefficients ko, a new powerful randomized tech-
nique is proposed. This technique is based on a necessary con-
dition for stability in terms of a special recursion which involves
only the coefficients k2i−3, k2i−1, and k2i+1, i = 2, 3, . . . , no.
The condition leads to a very efficient recursive algorithm which
outperforms standard Monte Carlo methods based on random-
ization of independent identically distributed (iid) points within
a hyperrectangle.

On the other hand, for the even coefficients ke we use de-
terministic methods which require to check if the intersection
of the hyperrectangle Ke and a polyhedral cone is non-empty.
In such a case, specific points within the intersection can be
immediately computed solving one single linear program.

The results of the paper allow to find a Hurwitz polynomial
p(s, k) = p(s, ke, ko) within the interval polynomial family,
if one exists. In addition, we also estimate the volume of the
set of Hurwitz interval polynomials. This estimate is obtained
using a new technical result, and requires standard methods for
computing the volume of polytopes.

The same approach can be followed when randomized meth-
ods are utilized for the even coefficients and deterministic meth-
ods are used for the odd coefficients, thus leaving some flexi-
bility in the design procedure. The paper finally includes some
simulations showing that the method works very well for poly-
nomials of order up to 16. Rejection rates and numerical com-
parisons with other techniques are also given. These compar-
isons show the superiority of the approach proposed here.

2. Randomized methods for odd coefficients

We write the polynomial p(s, k) in terms of even and odd
polynomials with coefficient vectors ke and ko. That is, for
s = "�, we write

p("�, k) = pe(�
2, ke) + "�po(�

2, ko),

where

pe(�
2, ke)

.= uT
e (�2)ke,

po(�
2, ko)

.= uT
o (�2)ko,

and

uT
e (�2) = [1, −�2, �4, . . . , (−1)ne�2ne ],

uT
o (�2) = [1, −�2, �4, . . . , (−1)no�2no ].
As discussed in the Introduction, we assume that the odd

coefficients of p(s, k) are random variables distributed in the
intervals k2i+1 ∈ [k−

2i+1, k
+
2i+1], i = 0, 1, . . . , no.

We now state a necessary condition for stability of the interval
polynomial p(s, k) which is used in the randomized algorithm
presented subsequently.

Theorem 1 (Necessary condition for stability). Consider the
odd polynomial po(�2, ko), with fixed ko ∈ Ko. Then, a neces-
sary condition for Hurwitz stability of the interval polynomial
p(s, k), ke ∈ Ke, and ko fixed, is that

k2i+1 �C(i, no)
k2

2i−1

k2i−3
, i = 2, 3, . . . , no, (2)

where

C(i, no)
.= i − 1

i

no − i + 1

no − i + 2
. (3)

Proof. Due to the Hermite–Biehler Theorem, see e.g. [2], a
necessary condition for a polynomial to be stable is that its odd
part po(�2, ko) has only real positive distinct roots

�2
1 < �2

2 < · · · < �2
no

.

The proof is completed observing that (2) is a necessary
condition for a polynomial to have positive real roots, see
Lemma 3 in the Appendix. �

Remark 1. As stated in the proof of Theorem 1, the
Hermite–Biehler Theorem provides a necessary and sufficient
condition for the stability of the whole polynomial p(s, k)

based on the positivity of the roots of the odd polynomial
po(s, k) only. Additional details regarding necessary conditions
for a polynomial to have all real distinct roots can be found in
[11]. Notice that, for no �2, condition (2) is also sufficient for
the polynomial po(�2, ko) to have real positive distinct roots.

Other necessary conditions for stability, based on the coeffi-
cients of the whole polynomial p(s, k), such as those proposed
in [10], can in principle be used within our framework. How-
ever, Theorem 1 allows us to treat in a (more-efficient) deter-
ministic way the remaining even coefficients.

The idea exploited in the randomized algorithm below is that
generating samples in the entire odd hyperrectangle Ko is su-
perfluous, and we only need to generate samples within a subset
of the odd hyperrectangle defined by Theorem 1. Furthermore,
the recursion given in this result is used in order to generate
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Fig. 1. Plot of the sets Knec
o and Ko for no = 2.

Table 1
Estimated ratio between the volumes of the sets Knec

o and Ko based on
100, 000 samples

Degree of odd polynomial no Estimated ratio �̂(no)

2 0.02794
3 0.00113
4 2e − 5
�5 0.00000

samples sequentially. More precisely, we define the set

Knec
o

.=
{
ko ∈ Ko : k2i+1 �C(i, no)

k2
2i−1

k2i−3
, i = 2, 3, . . . , no

}
.

Fig. 1 shows a plot of the set Knec
o for no = 2, and its cross-

section for k1 = 0.2. In Table 1, we report the (estimated) ratio
�̂(no) between the volumes of the sets Knec

o and Ko, for Ko =
[0.001, 1]no . This ratio is obtained by randomization generating
uniform random samples in the set Ko. It can be seen that this
ratio approaches zero very rapidly, and is negligible for no �4.
The conclusion is therefore immediate: a randomized algorithm
based on random samples within the set Knec

o outperforms
classical randomized algorithms based on uniform independent
sample generation within the odd hyperrectangle.

An algorithm for generating samples within Knec
o is pre-

sented next. We remark that the samples drawn by Algorithm 1
are not uniformly distributed in Knec

o . However, the algorithm
is based on an importance sampling technique which provides
a variance reduction. This is discussed in detail in Section 4.

Algorithm 1. Generates a vector of coefficients ko ∈ Knec
o .

1. generate k1, k3 uniformly in [k−
1 , k+

1 ], [k−
3 , k+

3 ],
2. for i = 2, 3, . . . , no

(a) construct the interval

I2i+1
.=

[
k−

2i+1, min

{
k+

2i+1, C(i, no)
k2

2i−1

k2i−3

}]

(b) if I2i+1 is empty go to 1
(b) else generate k2i+1 uniformly in the

interval I2i+1.

3. Deterministic methods for even coefficients

Once the odd coefficients ko of the polynomial p(s, k) are
obtained using the method proposed in the previous section, the
even coefficients ke can be easily determined solving one linear
program. To show this fact, we state the following theorem. For
a closely related result, see Ref. [15].

Theorem 2. Suppose that ko ∈ Ko is generated according to
Algorithm 1. Then, the set He of all ke ∈ Ke providing a
Hurwitz interval polynomial p(s, k) is either empty or is given
by

He = Ke ∩ Ce, (4)

where Ce is the interior of a polyhedral cone and is defined as

Ce
.= {ke : Veke < 0}

0 being the zero vector and

Ve
.=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−uT
e (0)

uT
e (�2

1)

−uT
e (�2

2)

...

(−1)no uT
e (�2

no
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Proof. The Hermite–Biehler Theorem, see e.g. [2], can be
stated as follows: a polynomial p(s, k) is Hurwitz if and
only if the roots of the polynomials po(�2, ko) and pe(�2, ke)

are all real, distinct, interlacing, and have the same sign.
We observe that for � = 0, po(0, ko) = k0 > 0. Hence, the
condition can be written as: po(�2, ko) has all positive,
distinct, real roots 0 < �2

1 < �2
2 < · · · < �2

no
and pe(�2, ke)



Aut
ho

r's
   

pe
rs

on
al

   
co

py

434 F. Dabbene et al. / Systems & Control Letters 56 (2007) 431–438

at these roots has alternating signs given by pe(0, ke) > 0,

pe(�2
1, ke) < 0, pe(�2

2, ke) > 0, . . . . The proof is completed
observing that this is exactly the condition defining Ce. �

Clearly, checking if the polytope He is empty can be ac-
complished solving one linear feasibility program. If He is
non-empty, then a specific coefficient vector ke ∈ He can be
easily computed. For example, we could use the analytic cen-
ter of the inequalities defining (4), see e.g. [1] for definition.
The conclusion is that the polynomial p(s, ke, ko) having odd
coefficients ko given by Algorithm 1 and even coefficients ke
provided by Theorem 2 is Hurwitz.

Next, we state the proposed algorithm for generating a stable
polynomial in the interval family (1).

Algorithm 2. Generates a vector of coefficients k ∈ K such
that p(s, k) is Hurwitz.

1. generate ko according to Algorithm 1
2. if the polynomial po(�2, ko) has all real

positive distinct roots
(a) using the roots �2

1 < �2
2 < · · · < �2

no
construct Ve and the set

Ce = {ke : Veke < 0}
(b) if the set He = Ke ∩ Ce is non-empty,

let ke be the analytic center ofHe and
return (ko, ke)

(b) else go to 1.

4. On the volume of stable polynomials

The objective of this section is to estimate the volume Vstab
of stable polynomials with coefficients in K. Formally, this
volume is defined as

Vstab =
∫
H

dk,

where

H = {k ∈ K : p(s, k) is Hurwitz}.
To this end, we propose a randomized algorithm which re-

quires samples of ko provided by Algorithm 1 and relies on a
deterministic computation of the volume of the polytope He.

Remark 2 (Volume of a polytope). It is well known that the
exact computation of the volume of a polytope is a compu-
tationally difficult problem, see e.g. [4]. Nevertheless, algo-
rithms which work “reasonably well” for medium-size prob-
lems have been developed since the early eighties, see [9]. A
different approach followed in this literature is to develop ef-
ficient polynomial-time randomized algorithms for computing
the volume of convex bodies, see [5]. In this case, clearly, we
obtain only probabilistic estimates of the volume.

In order to compute the volume of H, we propose an
algorithm which is based on a multidimensional extension of a

x2

x1

x2

g(x)

ξ1

ξ2

g(ξ1)

0

+

x1
+

Fig. 2. Two-dimensional plot of the proposed algorithm for computing a
weighted volume. A random sample �1 is drawn uniformly in [0, x+

1 ], and
the second component �2 is drawn uniformly in the interval [0, g(�1)].

particular Monte Carlo technique for volume estimation. For
the sake of simplicity, in the next section we discuss this
technique for the two-dimensional case.

4.1. Randomized volume estimation

In this section, we discuss the problem of estimating
efficiently the (weighted) volume VA of a two-dimensional
bounded set A ⊆ R2. The results presented are instrumental
to the construction of a probabilistic estimate of the volume
of stable polynomials Vstab, discussed in Section 4.2. Let the
volume of A be defined as

VA
.=

∫
A

w(�) d�, (5)

where w(·) is a given weighting function. Assume that A ⊆
G ⊆ B, where

B
.= {x ∈ R2 : x1 ∈ [0, x+

1 ], x2 ∈ [0, x+
2 ]}

and

G
.= {x ∈ R2 : x1 ∈ [0, x+

1 ], x2 ∈ [0, g(x1)]},
where g(·) : R2 → R is a measurable function which takes
positive values in the interval [0, x+

1 ]. For simplicity, we also
assume g(x1)�x+

2 . This situation is depicted in Fig. 2.
Following the same philosophy proposed in Algorithm 1, we

generate a random sample ��
1 uniformly in [0, x+

1 ], and ��
2 uni-

formly in [0, g(x1)]. Then, we define the (weighted) indicator
function of the set A as

XA(x)
.=

{
w(x) if x ∈ A,

0 otherwise.

We have the following lemma.
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Lemma 1. With the notation above, with probability one the
volume of A is given by

VA = lim
N→∞

1

N

N∑
�=1

XA(��) x+
1 g(��

1). (6)

Proof. First, notice that we can write the density function of a
random variable � generated according to the proposed method
as f�(�)=f1(�1)f2(�2|�1) where f1(�1) is the marginal density
of �1 given by

f1(�1)
.=

{ 1

x+
1

if �1 ∈ [0, x+
1 ],

0 otherwise

and f2(�2|�1) is the conditional density

f2(�2|�1)
.=

{ 1

g(�1)
if �2 ∈ [0, g(�1)],

0 otherwise.

By definition of expected value, we have

E{x+
1 g(�1)XA(�)} =

∫
XA(�) x+

1 g(�1) f�(�) d�

=
∫ x+

1

0

∫ g(�1)

0
XA(�) d� = VA,

where the last equality follows from the fact that A ∈ G. The
statement of the lemma is validated using the strong law of
large numbers, see, for instance, [14]. �

4.2. Computation of Vstab

We now return to the problem of estimating the volume Vstab
of the set H. To this end, we first introduce some useful nota-
tion. Let k�

o be the �th vector sample ko generated by Algorithm
1. We denote by

I �
2i+1, i = 0, 1, . . . , no

the intervals I2i+1 corresponding to k�
o. Moreover, with a slight

abuse of notation, we let

I �
1

.= [k−
1 , k+

1 ], I �
3

.= [k−
3 , k+

3 ].
We denote by |I �

2i+1| the lengths of the intervals, if they are
non-empty, otherwise we let |I �

2i+1| = 0. Similarly, we define
the set He(k

�
o) as the set He given in (4) corresponding to k�

o,
and we denote by VHe(k

�
o) its volume. Finally, let Ho be the

set of polynomial coefficients ko ∈ Ko such that p(s, ko) has
all distinct positive roots.

We are now in the position of defining the following weighted
indicator function:

XHo(ko)
.=

{
VHe(ko) if x ∈ Ho,

0 otherwise.

Theorem 3. Suppose that the vectors k�
o, � = 1, . . . , N , are

generated according to Algorithm 1. Then, with probability one

the volume of stable polynomials Vstab is given by

Vstab = lim
N→∞

1

N

N∑
�=1

XHo(k
�
o)

no∏
i=0

|I �
2i+1|.

The proof, not reported here, is a multidimensional exten-
sion of Lemma 1 and easily follows from induction arguments.
In particular, the quantity

∏no
i=0|I �

2i+1| represents the multidi-

mensional extension of x+
1 g(��

1) in (6), while XHo(·) plays the
role of XA(·).

4.3. Connections with importance sampling

In this section, we highlight the connections of the proposed
algorithm for computing the volume of stable polynomials with
a classical variance reduction technique known as importance
sampling, see, for instance, [13].

For simplicity, we return to the two-dimensional case dis-
cussed in Section 4.1, and consider unit weighting w(x) ≡ 1
in (5). We first remark that, in principle, the volume VA of
the set A ⊆ B could be estimated using a direct Monte Carlo
method:

VA 	 1

N
VB

N∑
�=1

XA(��),

where the samples �� are drawn uniformly1 in B and VB
.=∫

B d�. In other words, we may use the estimate

�U
.= VBXA(�), � ∼ UB(�) (7)

UB(�) being the uniform density on B defined as

UB(�)
.=

{ 1

VB
if � ∈ B,

0 otherwise.

In fact, the expected value of �U is equal to the volume of A,
i.e.

E{�U} = VA.

On the other hand, in Lemma 1 we introduce a weighting pdf
f�(�), writing

VA =
∫

XA(�) d� =
∫

XA(�)

f�(�)
f�(�) d�,

where f�(�) is the density of the samples drawn according to
Algorithm 2 (see proof of Lemma 1 for details), and use the
importance sampling estimate

�is
.= �(�)XA(�), � ∼ f�(�) (8)

with �(�) = 1/f�(�). Notice in fact that �(�) = x+
1 g(�1) for

� ∈ A.
This is exactly the variance reduction techniques proposed

in importance sampling, see [13]. In particular, in the following

1 In the “one-in-a-box” setting, this corresponds to generate uniform
samples k�

o in the set Ko.
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lemma, we show that the variance of estimate (8) improves
upon the variance of classical Monte Carlo estimate (7).

Lemma 2. With the notation above, the variance of estimate
(8) is smaller than the variance of the Monte Carlo estimate
(7), that is

Var(�is)�Var(�U).

Proof. We first notice that E{�U} = E{�is} = VA, therefore it
is sufficient to show that

E{�2
is}�E{�2

U}.
This is immediately seen, since

E{�2
is} .=

∫ (
XA(�)

f�(�)

)2

f�(�) d�

=
∫

X2
A(�)

f�(�)
d� =

∫
x+

1 g(�1)X
2
A(�) d�

�
∫

VBX
2
A(�) d�

=
∫

V2
BX

2
A(�)

1

VB
d� =

∫
�2
UUB(�) d�

= E{�2
U}. �

5. Numerical examples

5.1. Example 1

In the first example, we studied the problem of finding a
stable polynomial in a box and of computing a probability-one
estimate of the volume of stability. To this end, we considered
the following interval polynomial of degree five:

p(s, k) = [1, 5] + [1, 5]s + [4, 8]s2 + [6, 10]s3

+ [4, 8]s4 + [6, 10]s5.

First, we constructed the four Kharitonov polynomials, see [8]
for details:

p1(s)
.= k−

0 + k−
1 s + k+

2 s2 + k+
3 s3 + k−

4 s4 + k−
5 s5

= 1 + s + 8s2 + 10s3 + 4s4 + 6s5,

p2(s)
.= k+

0 + k+
1 s + k−

2 s2 + k−
3 s3 + k+

4 s4 + k+
5 s5

= 5 + 5s + 4s2 + 6s3 + 8s4 + 10s5,

p3(s)
.= k+

0 + k−
1 s + k−

2 s2 + k+
3 s3 + k+

4 s4 + k−
5 s5

= 5 + s + 4s2 + 10s3 + 8s4 + 6s5,

p4(s)
.= k−

0 + k+
1 s + k+

2 s2 + k−
3 s3 + k−

4 s4 + k+
5 s5

= 1 + 5s + 8s2 + 6s3 + 4s4 + 10s5.

The four polynomials are all unstable. Hence, we pose the
question: Is the family robustly unstable or there exists a stable
polynomial in the box K? To answer this question, we resort
to the procedure proposed in the paper. First notice that, in
this case, no = 2, and therefore condition (2) is necessary and
sufficient for the odd polynomial po(�2, ko) to possess distinct

positive real roots. Algorithm 1 converged in one iteration2 to
the vector of coefficients

ko = [3.1951 9.7263 6.4700]T. (9)

The resulting polynomial po(�2, ko) has two real positive roots
�2

1 = 1.0184, �2
2 = 0.4849. Therefore, the set Ce of Theorem

2 is defined by the three inequalities

− k0 < 0,

k0 − 0.4849k2 + 0.2352k4 < 0,

− k0 + 1.0184k2 − 1.0371k4 < 0.

The set He = Ke ∩ Ce is represented in Fig. 3. Any point in
the set He corresponds to a stable polynomial. In particular,
we chose the point

ke = [1.4282 6.6994 6.3374]T (10)

which is the analytic center of the set. Putting together (9) and
(10), we obtained the polynomial

p(s, k) = 6.4700s5 + 6.3374s4 + 9.7263s3 + 6.6994s2

+ 3.1951s + 1.4282

having stable roots

�1 = −0.6297,

�2,3 = −0.0772 ± 0.9083",
�4,5 = −0.0977 ± 0.6421".

Then, for statistical purposes, we ran Algorithm 2 for 10, 000
trials. In all the runs, the algorithm was able to find a stable
polynomial in the box in at most four iterations, and in the 99%
of the cases it converged at the first one.

Finally, using Theorem 3, we computed a probability-one
estimate of the volume of stability with N = 5000 samples
obtaining

Vstab = 18.7154.

Notice that, assuming a uniform measure in the box K, this
volume corresponds to a very small probability of stability of
0.0046.

To compare with standard Monte Carlo approximation meth-
ods, we considered the following running average version of
the volume estimation proposed in Theorem 3:

V̂
�+1
stab = �

� + 1
V̂

�

stab + 1

� + 1
XHo(k

�
o)

no∏
i=0

|I �
2i+1|.

The convergence of this estimate was compared to standard
volume estimate based on rejection from the box. The result,
depicted in Fig. 4, shows that the proposed methodology has
faster convergence.

2 One iteration corresponds to the generation of one vector of coefficients
ko and the solution of one linear feasibility program for checking that Ce is
non-empty.
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Fig. 3. (a) Set He = Ke ∩ Ce for Example 1. The star represents the analytic center of the set. (b) Section of He at the analytic center (k0 = 1.4282).
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Fig. 4. Estimate of the volume of stability Vstab. Solid line: running average
version of Theorem 3. Dashed line: standard Monte Carlo estimation based
on rejection from the box.

5.2. Example 2

To test the efficiency of the proposed approach for finding sta-
ble polynomials in an interval family, we constructed a bench-
mark interval polynomial of degree n with coefficients ranging
in the box

K = {k : ki ∈ [�, 1], i = 0, . . . , n}
with � = 10−10. For increasing values of n, we ran Algorithm
2 and computed the number of iterations (number of sam-

Table 2
Number of sample generations necessary for finding a stable polynomial of
degree n

Degree of polynomial Expected number of iterations

Algorithm 2 Standard MC

3 1 2
4 1 62
5 1 50
6 1 1108
7 2 28,334
8 2 ∞
9 3 ∞

10 5 ∞
11 7 ∞
12 34 ∞
13 80 ∞
14 626 ∞
15 4099 ∞
16 6461 ∞
17 76,968 ∞
18 90,093 ∞

ple generations of Algorithm 1) necessary for finding a stable
polynomial.

In Table 2 we report the expected number of iterations es-
timated over 1000 different runs of the algorithm, compared
with the expected number of iterations required using a fully
randomized approach based on rejection from the box K. The
symbol ∞ means that no stable polynomial was found after
105 sample generations. The table shows that the method is
very efficient for polynomials of degree up to 16, and it works
reasonably well for polynomials of degree 17 and 18.
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6. Conclusion

In this paper, we studied a mixed deterministic/randomized
approach for the complete instability of interval polynomials.
An interesting feature of this method is the exploitation of very
efficient randomized algorithms suitably tuned on the specific
stability problem.

Future research will be devoted to studying extensions in var-
ious directions including, in particular, stability of discrete time
system. In this case, odd and even polynomials can be replaced
by the symmetric and antisymmetric parts of the polynomial:

p(z, k) = psym(z, k) + pasym(z, k)

with psym(z, k)
.= 1

2 (p(z, k) + znp(z−1, k)) and pasym(z, k)
.=

1
2 (p(z, k)− znp(z−1, k)). However, a critical step that remains
is the development of recursive necessary conditions similar to
those presented in Theorem 1 of this paper.

Appendix

We state a technical lemma due to Newton, see [7, Theorem
51].

Lemma 3 (Necessary condition for real roots). If a polynomial

p(s) = a0 + a1s + · · · + ans
n

with non-vanishing coefficients a0, an �= 0, has all real roots,
then

ai−1ai+1 �C(i, n)a2
i (11)

where C(i, n) is defined in (3).

Proof. If p(s) has all real roots, then its derivative p′(s) also
has all real roots. In fact, between two subsequent real roots of
p there is a real root of p′. On the other hand, the polynomial

q(s)
.= snp(1/s) = an + an−1s + · · · + a0s

n

has also n real roots, which are the reciprocal of the roots
of p. Notice that the differentiation of the polynomial q(s)

is equivalent to a “backward” differentiation of the original
polynomial p(s). After (n − i − 1) “forward” differentiations
and (i−1) “backward” differentiations of the polynomial p(s),

we obtain a second degree polynomial d0 + d1s + d2s
2, whose

coefficients depend on the original coefficients of p(s). By
construction, this polynomial should have all real roots. This
is equivalent to require d2

1 �4d0d2. Rewriting this inequality
in terms of the original coefficients a0, . . . , an, by lengthy but
straightforward computations involving binomial coefficients,
we obtain (11). �
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