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Abstract

For discrete-time scalar systems, we propose an approach for designing feedback controllers of )xed order to minimize an upper bound
on the peak magnitude of the tracking error to a given command input. The work makes use of linear programming to design over a
class of closed-loop systems recently proposed for the rejection of non-zero initial conditions and bounded disturbances. We incorporate
performance robustness in the form of a guaranteed upper bound on the peak magnitude of the tracking error under plant coprime factor
uncertainty. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this paper, we design )xed-order dynamic feed-
back controllers for the tracking of )xed inputs in scalar
discrete-time systems.
Keel and Bhattacharyya (1999) have pointed out that

a key issue with )xed-order controller design is that one
cannot prespecify exactly the target closed-loop poles or
closed-loop transfer function and have proposed a design
approach based on specifying a region containing allow-
able closed-loop transfer function coe?cients. The method
involves linear programming problems. Another approach
which allows )xed-order design was introduced by Blan-
chini and Sznaier (1997, 2000) and was named design for
equalized performance. This method also uses linear pro-
gramming and gives rejection of bounded disturbances, but
diAers from the l1 approach of Dahleh and Pearson (1987)
in that non-zero initial conditions are considered. Extensions
of the approach in Blanchini and Sznaier (1997) have been
carried out in Polyak and Halpern (1999b, 2001), where the
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term superstable system was introduced to describe the class
of closed-loop systems for which equalized performance is
de)ned.
The problem of minimizing the l∞ norm of the tracking

error to a given command input was solved by Dahleh and
Pearson (1988) using minimum norm duality theory and
linear programming to obtain systems with FIR closed-loop
maps. Further aspects of the problem have been considered
in Moore and Bhattacharyya (1990), Halpern, Evans, and
Hill (1996), Casavola and Mosca (1997), Halpern (2000).
These approaches all involve )xed closed-loop poles and
thus are not suitable for )xed-order controller design. In
addition, as a practical issue, it is clearly highly desirable
to maintain tracking performance in the presence of plant
uncertainty. Analysis results on robust performance when
tracking )xed inputs are given by Khammash (1997) and
Elia, Young, and Dahleh (1995).
In the present paper, we extend the design approach in

Blanchini and Sznaier (1997, 2000), and Polyak and Halpern
(1999b, 2001) to deal with the problem of tracking com-
mands with a view to bounding the l∞ norm of the track-
ing error. Firstly, a new performance measure is proposed,
which is an upper bound on the l∞ norm of a signal and is
de)ned only for superstable systems. Like equalized perfor-
mance, the new measure can be minimized with respect to
controller coe?cients and can be used to design controllers
of )xed order. The approach can also be used to obtain
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designs giving guaranteed tracking performance under plant
uncertainty.

2. Preliminary results

We begin by recalling some results from Blanchini and
Sznaier (1997, 2000), and Polyak and Halpern (1999b,
2001) on a class of systems originally proposed in Blanchini
and Sznaier (1997) for the problem of rejecting bounded
disturbances in a nonasymptotic setting and an appropriate
performance measure �.
Consider a LTI SISO discrete-time closed-loop system

described by a transfer function

�(z) =
n(z)

1 + d(z)
; (1)

where

n(z) = n0 + n1z + · · ·+ nN zN ;

d(z) = d1z + · · ·+ dDzD:

We denote ‖n‖1 =
∑N

i=0 |ni|; ‖d‖1 =
∑D

i=1 |di|; ‖n‖∞ =
supi|ni|. Similarly, if h(z)=

∑∞
i=0 hiz

i, then ‖h‖1=
∑∞

i=0 |hi|
provided

∑∞
i=0 |hi|¡∞; and ‖h‖∞ = supi|hi| provided

supi|hi|¡∞.

De�nition 1. System (1) is superstable; if the polynomial
1 + d(z) is superstable; i.e. ‖d‖1¡ 1:

A useful performance criterion for superstable systems
was termed “equalized performance level” in Blanchini and
Sznaier (1997). For a superstable system (1) with transfer
function,

�(z) =
n(z)

1 + d(z)

equalized performance, �, is de)ned as

�(�) =
‖n‖1

1− ‖d‖1 : (2)

Some useful properties of � are:

(1) The value of � partially determines the response of a
system to non-zero initial conditions.

(2) If �(z) is a superstable transfer function, then

�(�)¿ ‖�‖1: (3)

(3) Fixed-order controllers minimizing � can be designed
using linear programs.

Nowwe introduce a quantity analogous to � for the minimum
amplitude tracking of a given input. Let h(z) be any causal
superstable rational transfer function. It can be factored as

h(z) = n(z)c(z) where

n(z) =
N∑
i=0

nizi

and

c(z) =
1

1 +
∑D

i=1 diz
i
;

is superstable, that is to say,
∑D

i=1 |di|¡ 1. We then have
the following lemma.

Lemma 1. An upper bound for ‖h‖∞ is given by

�(h):=
‖n‖∞

1− ‖d‖1 :

Proof. Consider the impulse response h of the transfer func-
tion h(z). Now

‖h‖∞6 ‖n‖∞‖c‖1 (4)

6 ‖n‖∞�(c) (5)

=
‖n‖∞

1− ‖d‖1 = �(h): (6)

Thus; for superstable h(z); we see that �(h) is an easily
computed upper bound on the l∞ norm of h. We show later
that it can be minimized using linear programs.

It is of interest to examine the sharpness of the inequalities
(4), (5). Equality is obtained in (4) when c(z) = 1, that is
when h(z) is a polynomial.
A condition for equality between the r.h.s. of (4) and (5)

is obtained next. It is noted in Polyak and Halpern (1999b)
that �(x) = ‖x‖1 for polynomial x(z). Here we indicate that
such equality is also obtained for certain all pole rational
functions.

Lemma 2. Assume c(z) = 1=(1 + d(z)) is superstable.

(a) If all di6 0; then �(c) = c(1) = ‖c‖1.
(b) If all −1idi6 0; then �(c) = c(−1) = ‖c‖1.
For example if c(z) = 1=(1− 0:2z − 0:3z2 − 0:1z3 − 0:2z8)
or c(z) = 1=(1 + 0:2z − 0:3z2 + 0:1z3 − 0:2z8); then �(c) =
‖c‖1 = 5:0.

3. Main results

Here, we are given a plant P(z) and a command w(z) and
our goal is to design a controller to force the output of the
plant to track the command. The plant P(z) has input u and
output y and is described by its transfer function:

P(z) =
b(z)
a(z)

=
b1z + b2z2 + · · ·+ bBzB

1 + a1z + · · ·+ aAzA
; (7)
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Fig. 1. 1-DOF feedback con)guration for tracking.

with y=Pu, while the command has transfer functionw(z)=
w1(z)=w2(z), where w1(z) and w2(z) are polynomials with
w2(0) = 1. Here, w(z) is allowed to be unstable. Our treat-
ment of the problem will require the tracking error �(k),
which is given by

�= w − y

to be superstable. Since �(z) = T (z)w(z) where T (z) is a
stable closed-loop transfer function, it is clear that if w(z)
is not superstable, then at least some of its poles will need
to be cancelled by zeros of T (z) in order to have �(z) su-
perstable. Although these cancellations can involve unsta-
ble poles; they do not aAect stability; they only aAect the
response to initial conditions at the input and output of the
command generator w(z). We assume these initial condi-
tions are zero-valued.
To illustrate some of the ideas involved, we set

w(z) = 1=(1 − z), which is not superstable. We consider
a 1-Degree-of-freedom (1-DOF) system, as in Fig. 1. For
a step command, this con)guration gives a controller with
integral action. Our goal is to design a controller of )xed
structure:

C(z) =
g(z)

(1− z)f(z)
=

g0 + g1z + · · ·+ gGzG

(1− z)(1 + f1z + · · ·+ fFzF)
(8)

(with prescribed orders F;G and f(0) = 1) which ensures
super stability of the closed-loop system and minimizes the
performance index �(�) where

�(z) =
1

1− z

(
a(1− z)f

(1− z)af + bg

)
:

As it stands, this transfer function cannot be made super-
stable through selection of f; g since the denominator of w
is not superstable. In order to obtain a superstable transfer
function, which is required for the development in this pa-
per, it is necessary to remove the factor (1 − z) from the
denominator, by cancelling with the numerator as discussed
earlier. After this cancellation, the tracking error becomes

�(z) =
af

(1− z)af + bg

for which

�(�) =
‖af‖∞

1− ‖(1− z)af + bg− 1‖1 (9)

provided (1− z)af + bg is superstable.

Next we show how to minimize �(�) with respect to the
controller coe?cients. Recall that controller orders F;G are
)xed.

Theorem 1. Minimization of (9) is equivalent to a para-
metric linear programming problem

�∗ = min
06!¡1

min
f;g

‖af‖∞
1− !

: (10)

‖(1− z)af + bg− 1‖16 !: (11)

If the admissible set in (11) is non-empty; then the
closed-loop system with the controller; found as the so-
lution of this optimization problem; is superstable with
�(�) = �∗.

For )xed !, the above problem can be cast, using stan-
dard techniques, as a linear program. Hence, the solution
over !∈ [0; 1) involves a one-parameter family of linear
programs.

4. Some extensions

4.1. 2-Degree-of-freedom systems

The preceding results are readily extended to the case of
2-DOF controller structures. In this case, the control input
u is given by

(1− z)f(z)u(k) = s(z)w(k)− g(z)y(k); (12)

where s(z) is a polynomial to be determined along with g(z)
and f(z).

4.2. Robust performance design

Here, we use the same problem setup as in Polyak and
Halpern (1999a, b) with plant coprime factor uncertainty
bounded in l1 norm. Consider the family of plants P with
coprime factor uncertainty

P(z) =
b(z)
a(z)

=
b0(z) + #b(z)
a0(z) + #a(z)

;

‖#b‖16 $B; ‖#a‖16 $A: (13)

Here, b(z); b0(z); #b(z) are polynomials, with b0(0) =
#b(0) = 0; a(z); a0(z); #a(z) are polynomials with a0(0) =
1; #a(0) = 0.
Omitting details, we obtain the following robust perfor-

mance result for 1-DOF systems.

Theorem 2. Suppose the parametric linear programming
problem

�∗ = min
06!¡1

min
f;g

‖a0f‖∞ + $A‖f‖∞
1− !

:

‖a0(1− z)f + b0g− 1‖1 + $B‖g‖1 + $A‖(1− z)f‖16 !;
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has a solution f∗; g∗. Then the controller C∗ =
g∗=((1 − z)f∗) makes all closed-loop systems with plants
P ∈P robustly superstable with ‖�‖∞6 �∗.

Note in the presence of plant uncertainty, �∗, as de)ned
here, is an upper bound on �(�).

5. Examples

Example 1. Consider the example from Casavola and
Mosca (1997) of designing a 1-DOF controller for plant;

P(z) =
−10z(z − 0:5)

(1− 10z)(1− 0:5z)

tracking a step.

Following the procedures in Theorems 1 and 2, we design
1-DOF controllers to minimize �(�) or an upper bound, in
the case of an uncertain plant, for some controller orders
and plant uncertainty levels as shown below:

F 2 3 4 5 6

G 2 3 4 5 6

$B = $A = 0; �∗ 40:0 21:6 16:9 15:0 14:2

%0 40:0 21:6 16:9 15:0 14:2

$B = $A = 0:01; �∗ 48:9 25:9 20:0 17:9 16:9

%0 40:0 21:6 16:9 15:0 14:2

$B = $A = 0:05; �∗ 431 93:0 67:6 50:1 44:4

%0 40:0 26:1 24:6 16:8 15:8

The table shows the values of �∗, which is our minimized
upper bound on ‖�‖∞; and %0 which we introduce here to
be the value of ‖�‖∞ achieved with the nominal plant. The
values of both of these quantities can be compared with the
lowest possible value of ‖�‖∞ achievable with the nominal
plant and given command and 1-DOF controller structure,
namely 13.5 from Casavola and Mosca (1997) and Halpern
(2000).
We show the results for controller orders G = 3; F = 3

in detail. With no plant uncertainty, the optimal controller
minimizing � using Theorem 1 is

g
(1− z)f

=
2:672− 1:448z − 2:896z2 + 1:472z3

(1− z)(1− 1:86z − 2:94z2)

(notice f3 = 0) giving a tracking error

�(z) = 1− 12:362z + 21:602z2 + 21:602z3 − 14:719z4:

Now %0 = ‖�‖∞ ≈ 21:6, and, since �(z) is FIR, �∗ = %0.
We now incorporate plant uncertainty by setting

$B = $A = 0:01. Using Theorem 2 to compute �∗, we
)nd �∗ is achieved at ! = 0:16376, even though the con-
troller and nominal tracking error are the same as the
previous result obtained with no uncertainty. Increasing

the uncertainty level to $B = $A = 0:05 gives an optimum at
! = 0:718, and a diAerent controller

g
(1− z)f

=
2:744− 2:276z − 1:780z2 + 1:112z3

(1− z)(1− 2:221z − 2:224z2)
;

giving a nominal tracking error

�(z) = 1− 12:721z + 26:101z2 + 12:243z3 − 11:119z4;

with �∗ = 93:0, %0 = 26:1.

Example 2. In the preceding examples; the nominal track-
ing errors; obtained by minimizing � or its upper bound;
are FIR. In this example; � is minimized with diAerent
closed-loop poles. With plant

P(z) =
−10:5z + 26z2 − 10z3

1− 10:75z + 7:625z2 − 1:25z3
;

which has zeros at z ∈{0; 0:5; 2:1} and poles at z ∈{0:1; 2; 4};
using F = G = 3; a feasible solution to the problem in
Theorem 1 can be found for ! = 0; but � is minimized at
! ≈ 0:05; giving a nominal tracking error

�(z) =
1−12:58z+23:95z2+21:25z3−23:95z4+4:51z5

1−0:00481147z+0:0451885z7
:

In this example, the plant has a stable pole and stable
zero near each other. In such situations, controller design
by closed-loop pole placement can be problematic since the
pole placement Diophantine equation can be poorly condi-
tioned, giving rise to large controller coe?cient magnitudes
unless a closed-loop pole is chosen carefully near the of-
fending plant pole and zero (Halpern, 1988). The automatic
closed-loop pole placement arising from the minimization
of �, which to some extent penalizes large controller coef-
)cients, can alleviate this problem.

6. Conclusions

We have extended results on the design of superstable
systems to the problem of tracking a )xed command. Our
approach involves minimizing an upper bound on the l∞
norm of the tracking error and readily allows the incor-
poration of plant coprime factor uncertainty to enable the
design of )xed-order controllers for guaranteed tracking per-
formance. In this paper, we have focussed on the case of a
step command (w(z) = 1=(1− z)) but other commands can
be treated similarly.
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