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Controllers by Interconnection are as Old as Control Itself
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They’re Pervasive and Efficient
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Even in your Privy
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Natural Way to Represent Interactions with Environment

Two mechanical systems, a human–controlled master and a teleoperated slave

(Anderson/ Spong, ’89): Transforming delays into transmission lines
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Sometimes the Only Solution

Overvoltage Problem The presence of long cables between a fast–sampling actuator
and plant induces oscillations: The cables behave like a transmission line.
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Works Even if We Don’t Know Why!

(Spong’06): Synchronization by interconnection, an open
problem since the 17th century.
♥
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Main Message: Paradigm Shift for Controller Design

Classical formulation: Signal–processing viewpoint
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System model and controller are signal processors: G1 : e1 → y1, G2 : e2 → y2.

Control specifications in terms of signals: tracking, disturbance attenuation, etc.

Uncertainty represented via the “Σ − ∆ paradigm":

discriminated via filtering,

very successful for linear time–invariant (LTI) systems

Control computed from solution of Riccati eqs (H∞,H2–designs).

“Impossible" in nonlinear case:

nonlinear systems “mix" the frequencies,

far from obvious computations (NL filtering, Hamilton-Jacobi-Bellman PDE).
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Passivity–Based Control: An Energy–Processing Viewpoint

View plant as energy–transformation, as opposed to signal–transformation, multiport
device

Consider systems that satisfy (generalized) energy–conservation:

Stored energy = Supplied energy + Dissipation

Control objective in PBC: preserve the energy–conservation property but with desired
energy and dissipation functions

Desired stored energy = New supplied energy + Desired dissipation

In other words

PBC = Energy Shaping + Damping Assignment

Two possible formulations:

State feedback (also called Standard PBC)

Control by Interconnection (CbI)

Objectives of the talk:

Provide a unified framework

Explore the relations between the two formulations
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Analytical vs Computational Approaches to Control

Modern analytical (model–based) control theory is not providing solutions to practical
control problems with “strong nonlinearities" (phenomena that cannot be captured with
linear models)

Existing analytical designs rely on high gain,

E.g. backstepping, sliding modes, Lyapunov domination

Intrinsically conservative

Amplifies noise

Energy consumption...

Trend in applications (prevailing?): (black–box, data–based) computational “solutions"

Expand NL on a basis + some kind of NL inversion

Neural networks, fuzzy controllers, genetic algorithms, etc

They might work but we will not understand why/when?

How to select the fuzzyfication–de-fuzzyfication rules?

How many neuron layers? Training?
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“New" Computational Trend

Approach

Approximating NL by a (large number of) “linear terms" (piece-wise, LPV,...)

Postulating an optimization problem (usually leading to LMI’s)

Feasibility checked with particular numerical cases

Questions

Why a performance criterion (with constraints) captures the control objective?

Wasn’t the fragility of optimal control the starting point for robust control?

Weighting coefficient selection Gordian knot? Is the addition of receding horizons
useful?

Computational complexity? (Possible for slow systems with “monotonic"
behaviors, e.g. process control)

Analytical vs computational approaches to control

Is the objective of control theory to generate code that "solves the problem"?

What do we learn about the system by doing this?

“Control theory = Number crunching" is a reductionist view

NL analysis leads to an understanding of the systems behavior

Control action best understood adopting a systems interconnection viewpoint
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Passivity–Based Control Programme

Consider models that capture main physical ingredients:

energy, dissipation and interconnection

Port–Hamiltonian (PH) systems

Attain classical control objectives (stability, performance) as by–products of:

energy–shaping,

interconnection modification and

damping assignment.

Applications of PBC

Mass–balance systems, electrical motors, magnetic levitation systems, power
systems, power converters, underwater vehicles, surface vessels, (air)spacecrafts,
walking robots, bilateral teleoperation, underactuated mechanical systems....
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Advantages of PBC

Advantages of energy–shaping (over nonlinearity cancellation and high gain)a

Handle on performance, not just stability

Respect, and effectively exploit, the structure of the system to

incorporate physical knowledge,

provide physical interpretations to the control action

Energy serves as a lingua franca to communicate with practitioners

There’s an elegant geometrical characterization of

power–conserving interconnections (via Dirac structures) and

passifiable NL systems (in terms of stable invertibility and relative degree)

a
Euphemistically called “nonlinearity domination”.
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Example: Control by Interconnection of a Flexible Pendulum
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Plant energy: H(qp, pp) = 1
2
p>p D

−1(qp)pp + V (qp)

Controller energy:
Hc(qc, pc, qp2) = 1

2
|pc|2 + 1

2
(qc − qp2)>K2(qc − qp2) + 1

2
(qc − δ)>K1(qc − δ)

Controller Rayleigh dissipation function: 1
2
q̇>c Rcq̇c
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Layout

1. Cyclo–passivity and formulation of PBC stabilization problem

2. Basic control by interconnection (CbI) of Port–Hamiltonian systems

Energy–Casimir method

Dissipation obstacle

3. Extensions of CbI method

Generating new cyclo–passivity properties

Overcoming the dissipation obstacle

Control by state–modulated interconnection

4. Standard (State–feedback) PBC

Energy balancing control (EBC)

Interconnection and damping assignment (IDA)

Power shaping

5. Comparison of the two methods

Domain of applicability

Standard PBC as a projection of CbI

6. Conclusions and outlook
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List of Acronyms

BIDA Basic IDA

CBI Control by interconnection

CBIPS CBI with power shaping output

CBISM
PS

CBI with power shaping output and state modulated interconnection

EBC Energy–balancing control

IDA Interconnection and damping assignment

NL Nonlinear

PBC Passivity–based control

PDE Partial differential equation

PS Power shaping

yPS Power shaping output
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1. Key Property: Cyclo–Passivity

Definition We say that the m–port system with state x ∈ R
n, and power port variables

u, y ∈ R
m

Σ :







ẋ = f(x) + g(x)u

y = h(x)

is cyclo–passive if there exists storage (energy) function H : R
n → R such that

H[x(t)] −H[x(0)]
︸ ︷︷ ︸

stored energy

≤

∫ t

0
u>(s)h(x(s))ds

︸ ︷︷ ︸

supplied energy

If H(x) = 0 then the system is passive with port variables (u, y) and storage function H(x).

Remark For passive systems we have

−

∫ t

0
u>(s)y(s)ds ≤ H[x(0)] <∞ ⇒

amount of energy that can be extracted from a passive system is bounded.
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Stabilization via Energy Shaping and Damping Injection

With u(t) ≡ 0, we have

H[x(t)] ≤ H[x(0)] ⇒

Trajectories tend to converge towards points of minimum energy

If the minima are strict H(x) qualifies as a Lyapunov function for them

To operate the system around some desired equilibrium point, say x∗, PBC shapes the
energy to assign a strict minimum at this point.

Furthermore, if we terminate the port with

u = −Kdiy, Kdi = K>
di > 0

we get

Ḣ ≤ −y>Kdiy ≤ 0.

Hence, x(t) → 0 if h(x) is detectable (for the closed–loop system). That is, if

h(x(t)) ≡ 0 ⇒ x(t) → 0.
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Port–Hamiltonian (PH) Systems

PH model of a physical system

Σ(u,y) :







ẋ = [J (x) −R(x)]∇H + g(x)u

y = g>(x)∇H

u>y has units of power (voltage–current, speed–force, angle–torque, etc.)

J = −J> is the interconnection matrix, specifies the internal power–conserving
structure (oscillation between potential and kinetic energies, Kirchhoff’s laws,
transformers, etc.)

R = R> ≥ 0 damping matrix (friction, resistors, etc.)

g is input matrix.

PH systems are cyclo–passive

Ḣ = −∇H>R∇H + u>y.

Invariance of PH structure Power preserving interconnection of PH systems is PH.

Nice geometric structure formalized with notion of Dirac structures.

Most nonlinear cyclo–passive systems can be written as PH systems. Actually, in
(network) modeling is the other way around!
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2. Control by Interconnection (CbI)

cΣ
-

+

-

+ Σu c

yc y

uΣ I

Plant (Σ) and controller (Σc), with states x ∈ R
n, ζ ∈ R

m, are cyclo–dissipative, that
is, ∃H : R

n → R, Hc : R
m → R, such that

Ḣ ≤ u>y, Ḣc ≤ u>c yc.

Interconnection subsystem (ΣI ) is power–preserving (lossless:)

y>u+ y>c uc = y>v (⇐ u = −yc + v, uc = y).

Interconnected system satisfies Ḣ + Ḣc ≤ v>y ⇒ H +Hc is the new energy.

Problem
Although Hc(ζ) is free, not clear how to “shape" x?
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Energy–Casimir Method

Proposition Assume, ∃ C : R
n → R

m such that the level sets Ωκ , {(x, ζ)|ζ = C(x) + κ}

are invariant, for all κ ∈ R. Then, for all Φ : R
m → R, the function

W (x, ζ)
4
= H(x) +Hc(ζ) + Φ(C(x) − ζ).

satisfies

Ẇ ≤ v>y

That is, the system is cyclo–passive w.r.t. W (x, ζ), which (given C) can be shaped selecting
Hc and Φ.

Proof Invariance of Ωκ is equivalent to

ζ̇ −
d

dt
C(x) = 0.

Hence,

Φ̇ = ∇Φ(Ċ − ζ̇) = 0 ⇒ Ẇ = Ḣ + Ḣc.

� � �
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Caveat: Achieving Asymptotic Stability

1

x (t)

x (o) x

x

2

ξ
All level sets

Ωκ = {(x, ζ)|ζ = C(x) + κ},

κ ∈ R are invariant. In principle, we must
set

ζ(0) = ζ? + C(x(0)) − C(x?)

to ensure that the trajectory starts (and
remains) in Ωκ?

, with

κ?
4
= ζ? − C(x?),

that contains the desired equilibrium. A
more practical solution is to estimate κ,
adding an integrator.
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Basic CbI for PH Systems

Given a PH system,

Σ(u,y)







ẋ = F (x)∇H(x) + g(x)u

y = g>(x)∇H(x),
⇒ Ḣ ≤ u>y

where we defined F (x) := J (x) −R(x), J = −J>, R = R> ≥ 0.

PH controller (nonlinear integrators), ζ ∈ R
m

Σc :







ζ̇ = uc

yc = ∇ζHc(ζ),
⇒ Ḣc = u>c yc

Standard negative feedback interconnection

ΣI :










u

uc



 =




0 −1

1 0








y

yc



 +




v

0



 ⇒ Ḣ + Ḣc ≤ v>y

For ease of presentation, and with loss of generality, we have taken ζ ∈ R
m .
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Negative Feedback Interconnection Subsystem ΣI

PSfrag replacements

+

+

+

–

–

–

v

Σ(u,y) ΣC

ΣI

y

yCu

uC
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Casimir Functions for PH Systems

Recalling the total energy function

W (x, ζ) = H(x) +Hc(ζ) + Φ(C(x) − ζ),

where H is given, C will be computed and Hc,Φ selected to shape W .

We want C to be independent of H and Hc – these are called Casimir functions.

The dynamics of the interconnected system is given by




ẋ

ζ̇



 =




F −g

g> 0








∇H

∇Hc



 +




g

0



 v.

We are looking for C such that Ċ − ζ̇ = 0 for all H and Hc. Thus, we get the PDEs

[

(∇C)> −Im

]




F −g

g> 0



 = 0.

Note that (∇C)>g = 0 ensures Ċ − ζ̇ = 0 even with v 6= 0.
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Conditions for CbI

Proposition Assume there exists a vector function C : R
n → R

m such that




F>

g>



∇C =




g

0



 (CbI − PDE)

Then, for all functions Φ : R
m → R, the following cyclo–passivity inequality is satisfied

Ẇ ≤ v>y,

where the shaped storage function W : R
n × R

m → R is defined as

W (x, ζ)
4
= H(x) +Hc(ζ) + Φ(C(x) − ζ).

Proof
Φ̇ = ∇Φ(Ċ − ζ̇) = 0.

� � �
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The Dissipation Obstacle

Proposition If (CbI–PDE) admits a solution then

R∇xΦ(C(x) − ζ) = 0,

for all Φ : R
m → R. Consequently, energy cannot be shaped for coordinates that are

affected by physical damping.
Proof (CbI–PDE) ⇔

F>∇C = g, g>∇C = 0 ⇒ (∇C)>F>∇C = 0

⇒ R∇C = 0

Proof completed with ∇xΦ = ∇C∇Φ. � � �

Remarks

OK for mechanical systems where dissipation enters in the momenta equations—that
need not be shaped.

Note that J∇C = −g. Hence, (CbI-PDE) is equivalent to

F∇C = −g, g>∇C = 0.
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The Dissipation Obstacle and Power Balance

We proved that (CbI–PDE) ⇒ F∇C = −g,R∇C = 0. Hence,

R(F>F )−1F>g = 0,

which is a necessary condition for the existence of Casimirs.

Denote (·)(x∗) := (·)∗, where x∗ is an equilibrium to be stabilized and assume
(CBI–PDE) holds. From ẋ = F∇H + gu we have that

0 = F∗∇H∗ + g∗u∗ ⇒ ∇H∗ = −(F>
∗ F∗)−1F>

∗ g∗u∗

⇒ R∇H∗ = −R(F>
∗ F∗)−1F>

∗ g∗u∗ ⇒ R∇H∗ = 0 ⇒ ∇>H∗R∗∇H∗ = 0.

From the power balance equation

Ḣ = −∇H>R∇H + u>y

we see that, if the system admits a Casimir then the dissipated power at the
equilibrium should be zero, i.e., u>∗ y∗ = 0. That is, we should be able to stabilize the
system extracting a finite amount of energy from the source.
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Example without Pervasive Dissipation

1

1C

1
L

1C

L

u

2R

qC

ϕL

Energy function H(qC , φL) = HE(qC) +HM (φL). Assume 0 = arg minHM .

Co-energy variables ∇H = col(vC , iL)

PH model




q̇C

φ̇L



 =




0 1

−1 −R2



∇H +




0

1



u

Equilibria: ∇φL
H(φ̄L) = 0 ⇒ φ̄L = 0 ⇒ no need to shape HM

No dissipation in the coordinate to be shaped (qC )

(CBI–PDE): F∇C = −g, g>∇C = 0, a Casimir is C(qC , φL) = qC , thus we can
add to H +Hc an arbitrary function Φ(qC − ζ) ⇒ stabilizable via CbI

Power balance: Ḣ = −R2(∇φL
H)2 + u∇φL

H ⇒ dissipation zero at equilibria.
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Example with Pervasive Dissipation

1
L

1Cu 2R 1

L

1C
qC

ϕL

Same energy function, but the dissipation has changed: J −R =





−1
R2

1

−1 0





Equilibria: (∇qC
H,∇φL

H) = (u∗, R2u∗) 6= (0, 0) ⇒ Dissipation in a coordinate to be
shaped (qC )

Not stabilizable via CbI!

We have RF−1g = col(−1
R2

, 0). Therefore, the necessary condition for the existence of

Casimirs, RF−1g = 0, is not satisfied

Power balance: Ḣ = − 1
R2

(∇qC
H)2 + u∇φL

H ⇒ dissipation not zero at equilibria.
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3. Generating New Cyclo–Passivity Properties

Idea To find new cyclo–passive outputs look for full rank matrices Fd : R
n → R

n×n, with

Fd + F>
d ≤ 0 (SYM)

and storage functions HPS : R
n → R such that

F∇H = Fd∇HPS.

Proposition For all solutions Fd of the PDE

∇
(

F−1
d
F∇H

)

=
[

∇
(

F−1
d
F∇H

)]>
(PO − PDE)

verifying (SYM) there exists a storage function HPS such that

Σ(u,yPS)







ẋ = F∇H + gu

yPS = −g>F−>
d

(F∇H + gu)
⇒ ḢPS ≤ u>yPS.

� � �
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Proof

Poincare’s Lemma Given f : R
n → R

n, f ∈ C1. There exists ψ : R
n → R such that

∇ψ = f if and only if

∇f = (∇f)>.

� � �

Consequently,

(PO − PDE) ⇔ ∇HPS = F−1
d
F∇H,

We then have the following chain of implications

Fd∇HPS = F∇H ⇒ ẋ = Fd∇HPS + gu

⇔ F−1
d
ẋ = ∇HPS + F−1

d
gu

⇒ ẋ>F−1
d
ẋ = ḢPS + ẋ>F−1

d
gu

⇒ 0 ≥ ḢPS + ẋ>F−1
d
gu

⇔ y>
PS
u ≥ ḢPS,

where we used ẋ>F−1
d
ẋ ≤ 0.

� � �
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Remarks

If F is full rank Fd = F solves (PO–PDE). In this case, Hd = H and we obtain the
new power–balance equation

Ḣ = ẋ>F−1ẋ+ u>yPS.

Comparing with Ḣ = u>y + ∇>HF∇H, we see that the new passive output is
obtained swapping the damping.

The new cyclo–passive output yPS is equal to g>∇HPS if and only if the dissipation
obstacle for the PH system with port variables (u, g>∇HPS) is absent, that is

RdF
−1
d
g = 0 ⇔ yPS = −g>F−>

d
(Fd∇HPS + gu) = g>∇HPS.

Setting Fd = F in (PO–PDE) we obtain

RF−1g = 0 ⇔ y = yPS.

For (underactuated) mechanical systems RF−1g = 0.
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Solving (PO–PDE)

Proposition (Ortega et al. ’04) For all matrices M : R
n → R

n×n, with M(x) = M>(x)

and all λ ∈ R, such that

M̃
4
=

1

2
[(∇2H)M + ∇(M∇H) + 2λIn]

is full rank,

F−1
d

= M̃F−1

solves (PO–PDE). The resulting storage function being

HPS = λH + (∇H)>M∇H.

� � �

Remarks

Generates a family of solutions of (PO–PDE) parameterized in terms of (M,λ).

Case of constant M reported in (Brayton/Moser ’64)
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CbI with Σ(u,yPS) Overcomes the Dissipation Obstacle

Proposition Assume (PO–PDE) admits a solution Fd verifying (SYM) and such that

Fd∇C = −g (CbIPS − PDE)

for some vector function C : R
n → R

m. Consider the PH system Σ(u,yPS) coupled with the
PH controller Σc through the power–preserving interconnection subsystem

ΣPS

I :










u

uc



 =




0 −1

1 0








yPS

yc



 +




v

0



 .

Then, for all functions Φ : R
m → R, the following cyclo–passivity inequality is satisfied

ẆPS ≤ v>yPS,

where

WPS(x, ζ)
4
= HPS(x) +Hc(ζ) + Φ(C(x) − ζ),

with HPS =
∫

(F−1
d
F∇H)dx.

Remark The condition g>∇C = 0 is absent.
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An Example of Stabilization via CbIPS

Consider the nonlinear RC circuit with x the
capacitor charge, ẋ = i and H ′ = v

PSfrag replacements

+

–

R

C

ẋ

H′(x)u

One PH model u→ y := 1
R
H′:

ẋ = −
1

R
H′ +

1

R
u

y =
1

R
H′.

Power balance equation

Ḣ = −
1

R
(H′)2 +H′ 1

R
u.

Best understood from the equivalent cir-
cuit:

PSfrag replacements

+

–
R

ẋ

H′(x)
H′

R
u
R

obtained applying the Thevenin–Norton
transformation A more physically sensi-
ble way of viewing the system is u → ẋ,
that is,

Σ(u,y PS) :







ẋ = − 1
R
H′ + 1

R
u

y PS = − 1
R
H′ + 1

R
u = ẋ,
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cont’d

Total energy function W PS(x, ζ) = H(x) + 1
2Cc

(ζ − Ccu?)2 − u?(x− ζ).

The controller is given by

Σc + ΣPS

I :







ζ̇ = 1
R

(−H′ + u? − 1
Cc
ζ + v)

u = u? − 1
Cc
ζ + v.

Physical realization

PSfrag replacements

+
+ +

–

– –

R

C

Cc

ẋζ̇

H′(x)

1
Cc
ζ

u

u?

v

Remark It can be implemented without distinction of “inputs" and “outputs".
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Control by State–Modulated Interconnection with Σ(u,y)

Proposition Assume the PDE




g⊥F>

g>



∇C = 0, , (CbISM − PDE)

admits a solution for some vector function C : R
n → R

m. The PH system Σ(u,y) with the
PH controller Σc and the state–modulated power–preserving interconnection subsystem

ΣSM
I :










u

uc



 =




0 −α(x)

α>(x) 0








y

yc



 +




v

0



 ,

where α : R
n → R

m×m is defined as

α = −(g>g)−1g>F∇C.

Then, for all functions Φ : R
m → R, Ẇ ≤ v>y, where

W (x, ζ)
4
= H(x) +Hc(ζ) + Φ(C(x) − ζ).
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Control by State–Modulated Interconnection with Σ(u,yPS)

Proposition Assume (PO–PDE) admits a solution Fd verifying (SYM) and such that

g⊥Fd∇C = 0, (CbISM
PS

− PDE)

for some vector function C : R
n → R

m, where g⊥ ∈ R
(n−m)×n is a full rank left annihilator

of g, that is, g⊥g = 0 and rank g⊥ = n−m. The PH system Σ(u,yPS) with the PH controller
Σc and the state–modulated power–preserving interconnection subsystem

ΣSM
I :










u

uc



 =




0 −α(x)

α>(x) 0








yPS

yc



 +




v

0



 ,

where α : R
n → R

m×m is defined as

α = −(g>g)−1g>Fd∇C.

Then, for all functions Φ : R
m → R, ẆPS ≤ v>yPS, where

WPS(x, ζ)
4
= HPS(x) +Hc(ζ) + Φ(C(x) − ζ).
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Summary of CbI

(CbI)



F

g>



∇C =




−g

0



 .

(CbISM)



g⊥F

g>



∇C = 0.

(Basic CbIPS)

F∇C = −g.

(Basic CbISM
PS

)

g⊥F∇C = 0.

(CbIPS)

Fd∇C = −g,

(CbISM
PS

)

g⊥Fd∇C = 0,

.
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cont’d

Implication diagram (from the point of view of solvability of the PDEs)

CbI - Basic CbI PS
- CbI PS

CbI
SM

?

- Basic CbI
SM

PS

?

- CbI
SM

PS

?

Notation: A→ B means that the set of solutions of the PDEs of B is strictly larger than

the one of A, consequently the set of plants to which B is applicable is also strictly larger.

Also, A↔ B if the PDEs are the same.
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4. Stabilization of PH Systems via Standard PBC

Passivation Objective Consider the PH system

Σ(u,y)







ẋ = F∇H + gu

y = g>∇H,
⇒ Ḣ = u>y + ∇H>F∇H

︸ ︷︷ ︸

−d≤0

with x∗ an equilibrium to be stabilized. Select a control action

u = û(x) + v,

so that the closed–loop system satisfies the desired dissipation equality (DDE)

Ḣd = v>z − dd (DDE)

Hd(x) has a strict minimum at x∗, (⇒ v → z is passive)

dd(t) ≥ 0 desired damping, (
∫
dd is the dissipated energy), and

z is the new passive output (to be defined.)

Remark State feedback, for ease of presentation. Must derivations applicable for (f, g, h)

systems.
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Satisfying the Desired Dissipation Equality

Fact (Hill/Moylan, ’76) Consider Σ(u,y) with u = û(x) + v. Then (DDE) holds iff

∇H>
d (F∇H + gû) = −dd (HM1)

z = g>∇Hd

Approach
Given (F, g,H). Select desired damping dd ≥ 0 to be able to characterize a set of

assignable energy functions and controls, (Hd, û), that solve (HM1).

Remarks

For LTI systems, ẋ = Ax+Bu, with

û = Kx, Hd =
1

2
x>Pdx, dd =

1

2
x>Rdx

(HM1) becomes the Lyapunov equation Pd(A+BK) + (A+BK)>Pd = −Rd.

In (HM1) the data are H,F and g and unknowns Hd, dd and û.

Relative degree zero outputs do not help because (HM1) is the same.
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Energy Balancing Control

Proposition Let

dd = d = −∇H>F∇H.

Denote û = ûEB and define the added energy function Ha
4
= Hd −H.

All solutions of the PDEs




g⊥F>

g>



∇Ha = 0 (EB − PDE) define assignable

energy functions with

ûEB = −(g>g)−1g>F>∇Ha.

The added energy equals the energy supplied by the controller, that is,

Ḣa = −y>ûEB.

EBC suffers from the dissipation obstacle. More precisely,

(EB − PDE) ⇒ R∇Ha = 0.
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Basic IDA–PBC

Proposition Let

dd = −∇H>
d F∇Hd

and denote û = ûBIDA.

All solutions of the PDE

g⊥F∇Ha = 0 (BIDA− PDE)

define assignable energy functions with

ûBIDA = (g>g)−1g>F∇Ha.

If R∇Ha = 0 and v = 0 then

Ḣa = −y>ûBIDA.

Remark The closed–loop system is ẋ = F∇Hd + gv.
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IDA–PBC

Proposition Let

dd = −∇H>
d Fd∇Hd,

with Fd + F>
d

≤ 0, and denote û = ûIDA.

All solutions of the PDE

g⊥Fd∇Ha = g⊥(F − Fd)∇H (IDA− PDE)

define assignable energy functions with

ûIDA = (g>g)−1g>[Fd∇Ha + (Fd − F )∇H].

If R = Rd =: − 1
2
(Fd + F>

d
), R∇Ha = 0 and v = 0 then Ḣa = −y>ûIDA.

Remarks

The closed–loop is ẋ = Fd∇Hd + gv, hence the name IDA.

Clearly EBC ⇒ BIDA–PBC ⇒ IDA–PBC but the converses are not true.
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Power Shaping PBC

In PS–PBC the solution of (IDA-PDE)

g⊥Fd∇Ha = g⊥(F − Fd)∇H

is split in two parts. Note that, using Hd = H +Ha, the latter is equivalent to

g⊥Fd∇Hd = g⊥F∇H (♥)

First, we solve (PO–PDE) F∇H = Fd∇HPS, which replaced in (♥) yields

g⊥Fd∇H̃a = 0 (PS − PDE)

where we defined H̃a
4
= Hd −HPS.

Remarks

(IDA–PDE) may have solutions even though F−1
d
F∇H is not a gradient of some

function—as required by (PO–PDE). In other words PS–PBC ⇒ IDA–PBC but the
converse is not true.

PS–PBC originated, and is a natural option, for electrical circuits. See (PhD
Jeltsema’05).
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cont’d

Proposition Denote û = ûPS and consider the solutions Fd, with Fd + F>
d

≤ 0, of

∇
(

F−1
d

F∇H
)

=
[

∇
(

F−1
d
F∇H

)]>
. (PO − PDE)

Let

dd = −(F∇H + gûPS)
>F−1

d
(F∇H + gûPS)

All solutions of the PDE

g⊥Fd∇H̃a = 0 (PS − PDE)

define assignable energy functions with

ûPS = (g>g)−1g>Fd∇H̃a.
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5. Comparison of CbI and Standard PBC: Applicability

(CbI)




F

g>



∇C =




−g

0





(CbISM)




g⊥F

g>



∇C = 0

(Basic CbIPS) F∇C = −g

(CbIPS) Fd∇C = −g plus (PO–PDE)
(F∇H = Fd∇HPS)

(Basic CbISM
PS

)

g⊥F∇C = 0

(CbISM
PS

)

g⊥Fd∇C = 0

plus (PO-PDE).

(EBC)




g⊥F

g>



∇Ha = 0

(Basic IDA)

g⊥F∇Ha = 0

(PS)

g⊥Fd∇Ha = 0

plus (PO–PDE)

(IDA)

g⊥Fd∇Ha = g⊥(F − Fd)∇H
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Final Implication Diagram

CbI - Basic CbI PS
- CbI PS

CbI
SM

?

- Basic CbI
SM

PS

?

- CbI
SM

PS

?

l l l

EBC - Basic IDA - PS - IDA
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Standard PBC and CbI: Connections

CbI
Dynamic feedback control u = −yc + v = −∇ζHc(ζ) + v,

ζ controllers state with energy Hc(ζ) free,

Generate Casimir functions, C, that make Ω = {(x, ζ)|ζ = C(x)} invariant

⇒ For arbitrary Φ

Ḣ(x) + Ḣc(ζ) + Φ(C(x) − ζ) ≤ v>y

Standard PBC
Solve some PDE on Ha and define a static state feedback, û(x), that ensures

Ḣ + Ḣa ≤ v>y

Questions
Is there a connection between the two methods?

What happens if we restrict to Ω?

Is there an advantage of dynamic extension from minimum assignment viewpoint?
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Restricting a CbI Controller Yields an EBC

Proposition Assume (CbI–PDE) admit a solution. Then, for all Hc : R
m → R, the PH

system Σ(u,y) in closed–loop with the static state–feedback control u = ûEB(x) + v, where

ûEB(x) = −∇CHc(C(x)),

satisfies the cyclo–passivity inequality

Ḣ +
d

dt
Hc(C(x)) ≤ v>y.

Furthermore,
d

dt
Hc(C(x)) = −y>ûEB.

Proof Define Ha(x)
4
= Hc(C(x))

Ḣa = (∇CHc(C))>(∇C)>(F∇H + gu)

= (∇CHc(C))>g>∇H (⇐ F>∇C = g, g>∇C = 0)

= −û>
EB
y (⇐ ûEB = −∇CHc(C), y = g>∇H).
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Restricting a CbIPS Controller Yields an IDA–PBC

Proposition Assume the conditions for CbIPS are satisfied. Then, for all Hc : R
m → R, the

state–feedback controller

ûIDA(x) = −∇CHc(C(x)),

ensures that the IDA–PBC matching condition

F∇H + gûIDA = Fd∇Hd

is satisfied with Hd = HPS +Ha and Ha(x)
4
= Hc(C(x)).

Proof
Conditions for CbIPS:

(PO–PDE) ⇔ F∇H = Fd∇HPS,

(CbIPS–PDE) ⇔ Fd∇C = −g.

Replacing in the matching equation yields

Fd(∇HPS − (∇C)ûIDA) = Fd∇Hd ⇔ ∇Ha = −(∇C)ûIDA,

which is satisfied with Ha and ûIDA above. � � �
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Dynamic Extension and Stabilization

We have concentrated our attention on the ability of the various PBCs to modify the
energy function, without particular concern to stabilization.

Stability will be ensured if a (desired) strict minimum is assigned to the total energy
function

Proposition In the single input case, the use of a dynamic extension does not provide any
additional freedom for minimum assignment to the corresponding static state–feedback
solutions.

Proof Define

W (x, ζ)
4
= H(x) +Hc(ζ) + Φ(C(x) − ζ)

Hd(x)
4
= H(x) +Hc(C(x)).

We can prove that

∇W? = 0 and ∇2W? > 0 ⇒ (∇Hd)? = 0 and (∇2Hd)? > 0.
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Future Research

Is there a CbI version of IDA? What is the modification that is needed to add this
degree of freedom?

We have fixed the order of the dynamic extension to be m. There are some
advantages for increasing their number. Also, we have taken simple nonlinear
integrators.

Dynamic extension does not help for minimum assignment, but certainly has an impact
on performance and simplicity.

Will dynamic extension enlarge the domain of applicability of IDA–PBC?

We have chosen the “standard" interconnection u = −yc, uc = y. If we consider
u = uc, y = −yc, it is also power–preserving hence shapes the energy—adding an
algebraic constraint. New way to shape kinetic energy in mechanical systems.
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