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On Avoiding Vertexization of Robustness Problems: The
Approximate Feasibility Concept

B. Ross Barmish and Pavel S. Shcherbakov

Abstract—For a large class of robustness problems with uncertain pa-
rameter vector confined to a box , there are many papers providing
results along the following lines. The desired performance specification is
robustly satisfied for all if and only if it is satisfied at each vertex

of . Since the number of vertices of explodes combinatorically with
the dimension of , the computation associated with the implementation of
such results is often intractable. The main point of this note is to introduce a
new approach to such problems aimed at alleviation of this computational
complexity problem. To this end, the notion ofapproximate feasibilityis in-
troduced, and the theory which follows from this definition is vertex-free.

Index Terms—Computational complexity, convex optimization, Monte
Carlo methods, robustness analysis and design.

I. INTRODUCTION

In this note, we consider robustness problems for systems described
in terms of a design vectorx 2 X � R

n and a real uncertain param-
eter vectorq 2 Q � R

`, whereQ is a box. For such systems, the
objective is to selectx 2 X such that a given continuous performance
specification

f(x; q) � 0

is satisfied for allq 2 Q. When such a design vectorx exists, the triple
(f;X;Q) is said to berobustly feasible. For the case when a design
vectorx 2 X exists leading to strict inequality, this triple is said to be
strictly robustly feasible. Equivalently, there exists some� > 0 such
that

f(x; q) � ��

for all q 2 Q. There are a large number of papers in the literature with
robust feasibility formulations which fit into this framework, e.g., see
[1]–[5], and the preliminary conference version of this note [6].

A. Vertexization and Overbounding

In many papers, it is shown that the robust feasibility off(x; q) � 0
is guaranteed if an only iff(x; qi) � 0 for each of the verticesqi of
the `-dimensional boxQ. Henceforth, we use the wordvertexization
to describe a large number of such results in this literature. The takeoff
point for this note is the fact that as the dimension` of q increases, the
number of vertices,N = 2`, undergoes a so-calledcombinatoric ex-
plosion. Consequently, the computational requirements associated with
a vertexization result may be excessive. One well-known example il-
lustrating this situation involves the failure of Matlab’s linear matrix
inequality (LMI) toolbox which can result; i.e., for an LMI involving
even a modest number of uncertain parameters, the vertexization which
is typically used can lead to a computational burden which cannot be
handled with the existing code. As an alternative to the computational
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burden associated with vertexization, it is often possible to introduce
overbounding function in such a way as to enable convex programming
in order to test for robust feasibility, e.g., see [4] for further discussion
of this issue.

B. Approximate Feasibility

The main objective of this note is to describe a new approach to
robust design problems which is aimed at overcoming the computa-
tional intractability problems associated with vertexization or the po-
tential conservatism associated with overbounding. Central to this new
approach is the notion ofapproximate feasibility. This new concept, in-
troduced in [3] in the restricted context of an LMI, involves softening
the robustness formulation so as to allow an arbitrarily small volume
� > 0 of performance violation in the space of uncertain parameters.

The main result is given in Section V; that is, for a large class of
so-called homogenizable robustness problems described by (f;X;Q),
it is shown that their approximate feasibility counterparts are solvable
via minimization of an appropriately constructed convex function�.
The numerical results presented are of two types. The most straightfor-
ward type involves evaluation of� which is performed in closed form.
The second type involves an evaluation of� which is facilitated via
the Monte Carlo literature, i.e., using methods and associated sampling
theory as in [7]–[11], we estimate the requisite integrals defining�.

II. THREE MOTIVATING EXAMPLES

To illustrate the issues addressed by the theory to follow, we now
provide three motivating examples which will be revisited later in the
note.

A. Example (Vertexization of Robust Quadratic Stability)

Consider the famous quadratic stability problem with uncertain pa-
rameter vectorq 2 Q, uncertain state-space matrixA(q) = A0 +

`

i=1
Aiqi being the affine linear combination of fixed matrices and

symmetric candidate Lyapunov matrixP = P (x) with entriesxi 2 R
viewed as the design variables. Then, the problem of robust quadratic
stability is to select a design vectorx 2 X = Rn such thatP (x) > 0
andAT (q)P (x) + P (x)A(q) < 0 for all q 2 Q. Hence, with

f(x; q) = �max AT (q)P (x) + P (x)A(q)

it is well known (for example, see [1]) that this strict feasibility design
problem inx is reducible to the verticesqi of Q. That is, the satisfac-
tion of the Lyapunov inequality above for allq 2 Q is equivalent to
AT (qi)P (x) + P (x)A(qi) < 0 for i = 1; 2; . . . ; N . This result and
an analogous result for a more general linear matrix inequality, is the
basis for numerical solution of the problem. That is, one considers a
“large LMI” by stacking the individual vertex LMIs. However, since
N = 2`, we see that the computational task can easily get out of hand.
For example, with five states and ten uncertain parameters, the resulting
LMI is of size greater than 5000� 5000.

B. Example (Vertexization of Robust Least Squares)

Many robustness problems reduce to least squares problems. Indeed,
with uncertain parameter vectorq 2 Q, uncertainm�n matrixA(q),
uncertainm�1 vectorb(q) and prespecified error tolerance� > 0, the
robust least squares problem (for example, see [5]) is to find a design
vectorx 2 X = Rn such thatkA(q)x� b(q)k2 � �2 for all q 2 Q.
Letting

f(x; q) = kA(q)x� b(q)k2 � �2

to make a connection with the notation in this note, the key observa-
tion to make is that ifA(q) andb(q) depend affine linearly onq, the
right-hand side above is convex inq. This implies the inequality above

is satisfied for allq 2 Q if and only ifkA(qi)x�b(qi)k2 � �2 at each
vertexqi ofQ. Analogous to the case of the quadratic stability above, a
computational scheme based on this vertexization may be impractical
to carry out.

C. Example (Vertexization of Uncertain Linear Inequalities)

With q 2 Q,A(q) andb(q) as defined above, many robustness prob-
lems can be reduced to finding a robustly feasible solution for the set of
uncertain linear inequalities. More specifically, with constraint setX
being a polyhedron, the robust feasibility problem for linear inequali-
ties is to find a design vectorx 2 X such thatA(q)x � b(q) for all
q 2 Q. Note that this problem is described in terms of the formulation
in this note by taking

f(x; q) = max
i

�Ti (A(q)x� b(q))

where�i denotes a unit vector in theith coordinate direction. Moreover,
analogous to the robust least squares problem above, it is readily shown
that if A(q) andb(q) depend affine linearly onq, the desired set of
linear inequalities is satisfied for allq 2 Q if and only if A(qi)x �
b(qi) at each vertexqi of Q.

III. A PPROXIMATE FEASIBILITY

As indicated in Section I, our approach to computational in-
tractability associated with vertexization involves softening the
robustness formulation so as to allow an arbitrarily small volume
� > 0 of performance violation in the space of uncertain parameters.
We now formalize this idea.

A. Approximate Feasibility

The triple (f;X;Q) is said to beapproximately feasibleif the fol-
lowing condition holds. Given any� > 0, there exists somex� 2 X
such that

Vol (fq 2 Q : f (x�; q) > 0g) < �

whereVol(�) denotes the volume operation. For such�, x� is called
an �-approximate solver. As indicated above, instead of guaranteeing
satisfaction off(x; q) � 0 for all q 2 Q, we seek solution vectorsx
with associatedviolation set

Qbad(x)
:
= fq 2 Q : f(x; q) > 0g

having volume less than any arbitrarily small prespecified level� > 0.
Analogous to the case of robustness, we say that (f;X;Q) is strictly
approximately feasibleif there exists some� > 0 such that the fol-
lowing condition holds: Given any� > 0, there exists somex� 2 X
such that

Vol (fq 2 Q : f (x�; q) > ��g) < �:

One of the main objectives of this note is the generation of�-approxi-
mate solvers.

B. Approximate Feasibility Versus Robust Feasibility

Although robust feasibility trivially implies approximate fea-
sibility (if xfeas is feasible, takex� = xfeas for all � > 0),
there are simple examples to show that the converse is false. To
illustrate, for the LMI-type scalar problem of [3] described by
f(x; q) = 1 � xq2, X = R and jqj � r definingQ, a straight-
forward calculation leads toVol (Qbad(x)) = 2r for x � 0 and
Vol (Qbad(x)) = 2min fr; 1=pxg for x > 0. Hence, (f;X;Q) is
approximately feasible but not robustly feasible. On the other hand,
under the strengthened hypothesis that eitherX is compact or the
triple (f;X;Q) satisfies a so-calledcompactifiability condition(see
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[12] for details), it is readily shown that robust and approximate
feasibility are equivalent.

C. Motivation of Theory to Follow

To motivate the more formal technical exposition to follow in
Sections IV and V, we first illustrate our method on a simple scalar
example. To this end, we now compare the common sense solution
method with the formal solution given in this note. Namely, we
consider a simple scalar LMIf(x; q) = 1 + xg(q) with g(q) being
a continuous, possibly nonlinear, function andQ defined byjqj � r.
By inspection, withX = R, the triple (f;X;Q) is strictly robustly
feasible if and only ifg(q) has one sign. On the other hand, letting

�(x)
:
=

r

�r

e
1+xg(q)

dq

we motivate the formalism to follow by making three key observations,
which can be readily verified. First,�(x) is a convex function ofx.
Second, in view of the simply derived inequality

Vol (Qbad(x)) =Vol (fq 2 [�r; r] : 1 + xg(q) � 0g)

�
r

�r

e
1+xg(q)

dq = �(x)

it follows that (f;X;Q) is approximately feasible if�(x) can be made
arbitrarily small by choice ofx. Third, if the minimum of�(x) is zero,
we can use any iteration sequencexk leading to the minimum value of
the convex function�(x) to obtain an�-approximate solver. That is,
given any� > 0, by pickingk suitably large so as to guarantee

�(xk) =
r

�r

e
1+x g(q)

dq < �

and by takingx� = xk, we have obtained an�-approximate solver.

IV. A PPROXIMATEFEASIBILITY INDICATORS AND HOMOGENIZATION

Motivated by the observations in the previous section, we first intro-
duce the class of test functions which play the key role in establishing
approximate feasibility of robustness problems.

A. Approximate Feasibility Indicator (AFI)

A continuous function� : R! R is said to be anAFI if it has the
following properties:

1) �(�) � 0 for all � 2 R;
2) �(�) < 1 if and only if � < 0;
3) �(�) ! 0 as� ! �1.

B. Remark

Note that the aforementioned definition does not depend on
(f;X;Q). However, as explained in Section V-B, there are a number
of reasons associated with numerical computation why it is advanta-
geous to tailor the choice of approximate feasibility indicator�(�) to
the specificationf(x; q).

C. Types of AFIs

The first type of AFI, exponential, was already introduced in Sec-
tion III-C; it has the form�(�) = e� . Indeed, Conditions 1)–3) above
hold. Clearly, such modifications as�(�) = e�� with � > 0 also sat-
isfy the definition above and can be used as AFIs. Various piecewise
linear functions can also be taken as AFIs. For instance, the second type
of AFI is described by

�(�) =
0 for � � ��;
�+�
�

for � > ��

where� > 0 is an adjustable parameter. There exist other types of
AFIs.

D. Remark

The main results of this note apply to the homogenizable perfor-
mance specification functionsf(x; q) described below. As seen via ex-
amples in the sequel, this homogenizability requirement is satisfied in
many of the common robustness formulations.

E. Homogenization

The functionf(x; q) is said to behomogenizablein x if there exists
a continuous functionf+ : (0;1)�R

n �R
` ! R and a positive

integerk such that

f
+(x0; x; q) =

k
f
+(x0; x; q)

and

f
+(x0; x; q) <0; if and only if f

x

x0
; q < 0

for all  > 0, x0 > 0, x 2 R
n andq 2 Q. In this setting, the pair

(x0; x) is called theextended design vector.

F. Example (LMI)

To illustrate the homogenization concept, we consider the LMI

F0(q) +

n

i=1

xiFi(q) < 0

whereFi(q); i = 0; . . . ; n, are known continuous symmetric matrix
functions ofq 2 Q. To assure negative–definiteness above, let

f(x; q)
:
= �max F0(q) +

n

i=1

xiFi(q) :

For the homogenization off(x; q), we takek = 1 and

f
+(x0; x; q) = �max x0F0(q) +

n

i=1

xiFi(q) :

Note that for some special cases, no homogenization may be needed
becausef(x; q) may already be homogeneous. For example, the
quadratic stability problem (see Section II-A), a special case of an
LMI, corresponds toF0(q) � 0 above. In this case, one can take

f
+(x0; x; q) = f(x; q):

G. Example (Least Squares)

In the least-squares setup (see Section II-B) with

f(x; q)
:
= kA(q)x� b(q)k2 � �

2

a homogenization is obtained withk = 2 and

f
+(x0; x; q)

:
= kA(q)x� b(q)x0k

2 � �
2
x
2
0:

H. Example (Linear Inequalities)

For the problem in Section II-C with the performance specification

f(x; q) = max
i

�
T
i (A(q)x� b(q))

the natural homogenization

f
+(x0; x; q) = max

i
�
T
i (A(q)x� b(q)x0)

with k = 1 can be used. In the numerical example in Section VI-B, it
is seen that other homogenizations are possible; a so-called extended
AFI is obtained which proves to be quite convenient for computation.

V. MAIN RESULT

In the theorem to follow, the AFI�(�) is used with argument� =
f+(x0; x; q) in the determination of approximate feasibility.
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Theorem: Given the continuous homogenizable performance spec-
ification functionf(x; q), X = R

n and an approximate feasibility
indicator�(�), define

�(x0; x)
:
=

Q

�(f+(x0; x; q))dq

and

�� :
= inf

x >0;x
�(x0; x):

Then, the following holds:

i) strict robust feasibility of (f;X;Q) implies�� = 0;
ii) �� = 0 implies approximate feasibility of (f;X;Q);

iii) for any x0 > 0 andx 2 Rn

Vol Qbad
x

x0
� �(x0; x):

Proof: To prove i), it suffices to show that for any" > 0 there
exist x"0 > 0 andx" 2 R

n such that�(x"0; x
") < ". Indeed, by

strict robust feasibility there exists somex = xfeas 2 R
n such that

f(xfeas; q) < 0 for all q 2 Q. Letting f+(x0; x; q) be the func-
tion obtained fromf(x; q) via the homogenizability assumption and in
view of Condition 3) defining an approximate feasibility indicator�,
it follows that with  suitably large,x"0 =  andx" = xfeas, the
inequality

� f
+ (x"0; x

"
; q) <

"

Vol(Q)

holds for allq 2 Q. It now follows that:

� (x"0; x
") =

Q

� f
+ (x"0; x

"
; q) dq <

Q

"

Vol(Q)
dq = ":

To prove ii) and iii), we fix arbitraryx0 > 0 andx 2 R
n. Using the

definition of f+(x0; x; q) and basic facts defining the AFI, it follows
that:

Vol Qbad

x

x0
=Vol q 2 Q : f

x

x0
; q > 0

=Vol q 2 Q : f+(x0; x; q) > 0

=
f (x ;x;q)�0

dq

�
f (x ;x;q)�0

�(f+(x0; x; q))dq

�
Q

� f
+ (x0; x; q) dq = �(x0; x):

A. Remarks

The theorem above indicates that the approximate feasibility ques-
tion can be recast as an optimization problem and it is important to note
that this optimization can often be accomplished via convex program-
ming. Indeed, it can be readily shown that this is the case iff+(x0; x; q)
is convex in (x0; x) and�(�) is nondecreasing convex. Whereas the
conditions in the theorem of Section V for approximate feasibility do
not depend on the choice of AFI�, the behavior of a numerical algo-
rithm is a different matter. This is particularly true for many cases when
the integral above is not computable in closed form and Monte Carlo
integration is used.

VI. NUMERICAL EXAMPLES

In this section, two numerical examples are considered in correspon-
dence with those given in Section II. The function�(x0; x) is com-

puted using the standard Monte Carlo technique for approximate cal-
culation of integrals. Namely

�(x0; x) �
1

N

N

j=1

e
f (x ;x;q )

whereqj = (qj1; . . . ; q
j

`) 2 Q, j = 1; . . . ; N , are samples for the
uncertainty obtained via the uniform distribution. In this first example,
no homogenization is needed and we usef+(x0; x; q) = f(x; q); see
Sections II-B and IV-F. In the second example, we see that it is some-
times possible to work with a function which might appropriately be
called anextended AFI. The extended AFI has the advantage that it is
tailored to the specific problem and the requisite optimization does not
require Monte Carlo integration.

A. Quadratic Stability

This first example is taken from [3] where the special case of AFI
theory was provided in the context of LMIs. Indeed, we consider
quadratic stability of then � n interval matrix

A =A0 +�A; �A
:
= ((�Aij));

j�Aij j �rSij ; i; j = 1; . . . ; n; S
:
= ((Sij))

of [3] described by

A0 =

�2 �2 0

1 0 0

1 0 �2

S =

0:1651 0:9394 0:5691

0:2451 0:4727 0:1457

0:7004 0:4014 0:3141

and radiusr > 0. The goal is to determine if a positive-definite matrix
P exists such thatATP + PA < 0 for all admissibleA.

To formulate using the notation in Sections I–III, any perturbation
matrix�A is associated with a nine-dimensional uncertainty vectorq

and the associated boxQ is defined by the shaping matrixS. In addi-
tion, the optimization variablex 2 R6 is composed of the six distinct
entries of the symmetric positive–definite matrixP . Since this example
involves nine uncertain parameters, the standard LMI technique re-
quires solving an optimization problem described by anM�M matrix
withM = 3�29 = 1536. Even such a moderate 3� 3 problem pushes
the limits of standard LMI solvers such as LMI Toolbox in Matlab in
the sense that the overall size of the system matrix in the internal LMI
Toolbox representation is beyond the allowable limits.

Now, with r = 1, we demonstrate use of the method prescribed by
the theorem. Note thatVol(Q) = 512 in this case. The convex min-
imization of�(x) was carried out with an exponential AFI�(�) =
e� and usingN = 400 samples for each integration; we obtained
�� � 11:6107; Matlab execution time was about 35 s on a PC running
at 488 MHz. Here, approximate feasibility is not guaranteed and it is
concluded that there is no common stabilizingP > 0 for the interval
family (LMI is infeasible). This minimum value�� was achieved with
the positive–definite matrix

P" =

19:5989 16:1542 �4:6553

16:1542 30:4427 �2:1223

�4:6553 �2:1223 9:4100

:

In order to validate this result, we carried a large-scale Monte Carlo test
with N = 100;000 samples and obtainedVol (Qbad(P")) � 1:1315.
As predicted by the theory, this quantity is less than��. In the second
part of this experiment, radiusr = 0:5 was taken; this time, optimiza-
tion resulted in�� � 0 and

P0 =

2419:6 1228:7 19:3

1228:7 5572:3 �686:7

19:3 �686:7 1403:9

:
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In accordance with the theorem, this LMI was deemed to be ap-
proximately feasible and the subsequent Monte Carlo test yielded
Vol(Qbad(P")) = 0.

B. Extended AFI for Robust Linear Inequalities

We considerA(q)x � b(q) with x 2 R
n being the design vector,

A(q) being anm � n affine linear matrix function andb(q) being an
m�1 affine linear vector function of the uncertaintyq 2 R`; jqij � ri,
i.e.,

A(q) = A0 +

`

i=1

Aiqi b(q) = b0 +

`

i=1

biqi

with eachAi being a fixedm � n matrix and eachbi being a fixed
m � 1 vector.

1) The Function�: The calculations for this example are carried
out using a so-calledextended AFIwhich is tailored to the structure at
hand. To this end, we construct a function�(x0; x) which majorizes
the volume ofQbad(x=x0) and has the properties required in the the-
orem. Specifically, letting�i denote a unit vector in theith coordinate
direction, forx as above andx0 > 0, we introduce the function

'(x0; x; q)
:
=

m

i=1

e� (A(q)x�b(q)x )

which plays the role of�(f+(x0; x; q)). This allows for the computa-
tion of the corresponding integral

�(x0; x) =
Q

'(x0; x; q)dq

in closed form given by

�(x0; x) = 2`
m

i=1

`

j=1

sinh(�Ti �jrj)

�Ti �j
e

where�j = �j(x)
:
= Ajx�bjx0; j = 0; 1; . . . ; `. First, it can readily

be established that strict robust feasibility implies that� can be driven
to zero. Next, it is assumed that the infimum of� is zero and noted that
with

Qbad(x)
:
= q 2 Q : �Ti (A(q)x� b(q)) � 0 for somei

a lengthy but straightforward manipulation of volume and integral in-
equalities leads to

Vol Qbad
x

x0
� �(x0; x)

for all pairs (x0; x) with x0 > 0.
2) Numerical Example:In this example,̀ = 2 is used and we ini-

tialized computation of the extended design parameter vector by taking
x0 = xinit0 randomly generated in(0; 1] andx = xinit as a feasible
point for the nominal pair(A0; b0). That is

xinit 2 Xfeas
nom

:
= fx 2 Rn : A0x < b0g:

In addition, an experiment was conducted withn = 2, m = 3 and the
following randomly generated data:

A0 =

1 0

0 1

�1 �1

A1 =

0:9376 0:5107

�0:2886 0:7896

�0:9019 �0:4277

A2 =

�0:4976 0:8816

0:8655 0:4037

�0:7380 0:6955

and

b0 =

1

1

1

b1 =

0:0441

0:8658

0:4267

b2 =

�0:5439

�0:1007

�0:6556

:

Noting that the feasibility set for the nominal (A0; b0) is the interior of
the triangle with vertices[�2 1 ]T , [ 1 1 ]T and[ 1 �2 ]T , we ran
the algorithm with many different values of the uncertainty radiusr to
find the largest radiusr = rmax � 1:12 for which (f;X;Q) is strictly
robustly feasible.

For r = 1:07 (below rmax) and randomly generated initial con-
ditions, the method was seen to converge leading to�� � 0 (with
CPU time, dependent on initial condition, ranging from 1 to 2.5 s on
a PC running at 488 MHz) and the subsequent Monte Carlo test, with
N = 1000000 uniformly spaced samples, givesVol(Qbad) � 0.
When we tookr = 1:17 (abovermax), a variety of random initial con-
ditions resulted inx" � [0:1131� 0:5125]T with �� � 0:0725 and
Vol(Qbad) � 0:0259 < ��. This result is consistent with the theory.
The number of iterations is 90–140 depending on the initial conditions
picked. Further increase ofr gives higher values of�� and respec-
tively, greaterQbad areas. Experiments were conducted with various
data, e.g., unboundedXfeas

nom , higher dimensions ofx andb, etc. The
conclusions are of the same flavor.

VII. FUTURE RESEARCH

The use of anextended AFIin Section VI resulted in the elimination
of Monte Carlo integration in favor of a closed form for�. It is felt
that further research along these lines would be worthwhile. To illus-
trate possible directions of research we recall that in the least squares
problem with AFI�(�) = e� , multivariable integration was required.
To avoid such integration, one might consider other measures of feasi-
bility; e.g., for positive integerk, let

�k(x)
:
=

Q

kA(q)x� b(q)k

�

k

dq

and note that a Chebyshev–Markov analysis leads to the fol-
lowing: First, for any candidate design vectorx, the inequality
Vol(Qbad(x)) � �k(x) is satisfied. Second, if the triple (f;X;Q) is
strictly robustly feasible, thenlimk!1 infx �k(x) = 0. In view of
the above, it can be argued that robust feasibility can be studied via
the sequence of convex optimizations��k

:
= infx �k(x). There are

now two key points to note: First, for each fixed even value ofk, the
requisite integral defining�k(x) can be computed in closed form,
i.e., Monte Carlo simulation is not needed. Second, ask gets large, the
number of terms comprising the integral for�k(x) becomes too large
to handle.

Motivated by the computational complexity problem associated with
largek above, we sketch a new direction of research which we believe
will lead to lowk values when the problem is suitably wellconditioned.
Indeed, let� 2 (0; 1) be an acceptablecomputational thresholdfor the
relative volume of violation. That is, we deem (f;X;Q) to beapprox-
imately feasible at tolerance level� if

Vol (Qbad(x))

Vol(Q)
< �

for somex 2 X. This leads us to consider the extent to which low�
values are achievable using�k(x) with low values ofk.

Our claim is that by defining variousconditioning numbersfor a ro-
bust least squares problem, the required threshold� is attainable with a
correspondingly low value ofk if the underlying problem is well con-
ditioned. To see this, supposex = x achieves strict robust feasibility
and consider the conditioner� 2 (0; 1) given by

�
:
= max

q2Q

kA(q)x� b(q)k

�
:

That is, the closer we get to the constraint violation, the more ill-con-
ditioned we consider the problem. Now, in view of the easily derived
inequality

��k � �kVol(Q)



824 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 5, MAY 2002

it is apparent that

k �
log �

log �

will suffice in order to achieve the desired specification.
The above is only intended to be one example of various condi-

tioners. To further illustrate, if we instead use the conditioner

�2
:
=

1

Vol(Q) Q

kA(q)x� b(q)k

�

2

dq

synonymous with expected behavior, the analysis yields

k �
log �

�

log �
:

Our point of view in this new line of research is that� and�2 are
unknown but that we can “expect” to succeed with lowk values if the
problem is well conditioned. There is an obvious analogy between this
point of view and the one taken in the study of mathematical program-
ming algorithms, i.e., efficacy of an algorithm is often judged on the
basis of unknown underlying conditioners related to the objective func-
tion and constraints.
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On Functional Approximation of the Equivalent Control
Using Learning Variable Structure Control

Wen-Jun Cao and Jian-Xin Xu

Abstract—A learning variable structure control (LVSC) approach
is originated to obtain the equivalent controlof a general class of mul-
tiple-input–multiple-output (MIMO) variable structure systems under
repeatable control tasks. LVSC synthesizes variable structure control
(VSC) as the robust part which stabilizes the system, and learning control
(LC) as the “plug-in” intelligent part which completely nullifies the effects
of the matched uncertainties on tracking error. Rigorous proof based on
energy function and functional analysis shows that the tracking error
sequence convergesuniformly to zero, and that the bounded LC sequence
converges to theequivalent control almost everywhere.

Index Terms—Equivalent control, learning control (LC), sliding mode,
variable structure control (VSC).

I. INTRODUCTION

Variable structure control (VSC) is often used to handle the
worst-case control environment: where system perturbations can be
structured, unstructured, deterministic, stochastic, and persistent,
and only upper bounds of system perturbations are available [1].
In practice, the inevitable switching nonidealities, such as delays,
incur the chattering phenomenon. Replacing the signum function
with a continuous function eliminates chattering, but degrades perfect
tracking.

If the control environment is less severe than the worst case, we may
come up with more appropriate control approaches, such as incorpo-
rating VSC with adaptive techniques, with time-delay control [2], etc.
Each of them caters to a particular control environment with morea
priori knowledge available than the worst case.

In practice, we often encounter the repeatable system or periodic
reference/disturbance where iterative learning control [3]–[6] or repet-
itive control [7], [8] is well suited. In this note, we consider the tracking
control tasks under a repeatable control environment, where the con-
trol system will repeat itself over iterations for a finite interval with
respect to a given tracking reference. Under the repeatable tasks, we
propose a learning variable structure control (LVSC) approach which
has a very simple structure consisting of two components in additive
form: a standard VSC based on the known upper bounds using a con-
tinuous smoothing function and a learning control (LC) which simply
adds up past VSC sequences.

The LVSC approach originated in this note differs from the related
existing LC schemes (e.g., [5], [9], etc.) and makes contributions in
a number of respects. 1) A general class of sliding surfaces for mul-
tiple-input–multiple-output (MIMO) variable structure systems under
tracking control tasks is considered instead of a linear combination of
the tracking errors only. 2) Generating theequivalent controlprofile
is highly desirable which assures perfect tracking and complete distur-
bance rejection. By virtue of repeatability, the past VSC sequences do
reflect the dynamic characteristics of the uncertain system. The pur-
pose of learning in LVSC is to extract useful control knowledge from
the past VSC sequences so as to approximate theequivalent control. 3)
The LC uses the past VSC for updating and overcomes the difficulty
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