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A. Vertexization and Overbounding

In many papers, it is shown that the robust feasibility of, ¢) < 0
is guaranteed if an only if (z, ¢*) < 0 for each of the verticeg’ of
the (-dimensional box. Henceforth, we use the wongrtexization
to describe a large number of such results in this literature. The takeoff
point for this note is the fact that as the dimensf@f ¢ increases, the
number of verticesN = 2¢, undergoes a so-callemmbinatoric ex-
plosion Consequently, the computational requirements associated with
a vertexization result may be excessive. One well-known example il-
lustrating this situation involves the failure of Matlab’s linear matrix
inequality (LMI) toolbox which can result; i.e., for an LMI involving
even a modest number of uncertain parameters, the vertexization which
is typically used can lead to a computational burden which cannot be
handled with the existing code. As an alternative to the computational
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burden associated with vertexization, it is often possible to introduisesatisfied for all; € @ if and only if | A(¢*)x — b(¢")||* < 6* ateach
overbounding function in such a way as to enable convex programmivertexq’ of Q. Analogous to the case of the quadratic stability above, a
in order to test for robust feasibility, e.g., see [4] for further discussiamomputational scheme based on this vertexization may be impractical
of this issue. to carry out.

B. Approximate Feasibility C. Example (Vertexization of Uncertain Linear Inequalities)

The main objective of this note is to describe a new approach towith ¢ € @, A(¢) andb(q¢) as defined above, many robustness prob-
robust design problems which is aimed at overcoming the computams can be reduced to finding a robustly feasible solution for the set of
tional intractability problems associated with vertexization or the pamncertain linear inequalities. More specifically, with constraint’set
tential conservatism associated with overbounding. Central to this neging a polyhedron, the robust feasibility problem for linear inequali-
approach is the notion afpproximate feasibilityThis new concept, in- ties is to find a design vectar € X such thatd(q)z < b(q) for all
troduced in [3] in the restricted context of an LMI, involves softening € (). Note that this problem is described in terms of the formulation
the robustness formulation so as to allow an arbitrarily small volume this note by taking
e > (0 of performance violation in the space of uncertain parameters. . T

The milin result is given in Sectioan; that is, for a Iaprge class of flr.q) = A (Alg)r = bla)
so-called homogenizable robustness problems describef] By (), wherey, denotes a unit vector in thieh coordinate direction. Moreover,
it is shown that their approximate feasibility counterparts are solvatd@alogous to the robust least squares problem above, itis readily shown
via minimization of an appropriately constructed convex function that if A(¢) andb(q) depend affine linearly on, the desired set of
The numerical results presented are of two types. The most straightiarear inequalities is satisfied for ajl € @ if and only if A(¢*)z <
ward type involves evaluation & which is performed in closed form. b(¢*) at each vertey’ of Q.

The second type involves an evaluationdofwhich is facilitated via
the Monte Carlo literature, i.e., using methods and associated sampling IIl. A PPROXIMATE FEASIBILITY

theory as in [7]-[11], we estimate the requisite integrals defiding . . ) . )
As indicated in Section |, our approach to computational in-

tractability associated with vertexization involves softening the

robustness formulation so as to allow an arbitrarily small volume
To illustrate the issues addressed by the theory to follow, we new> 0 of performance violation in the space of uncertain parameters.

provide three motivating examples which will be revisited later in the/e now formalize this idea.

note.

Il. THREE MOTIVATING EXAMPLES

A. Approximate Feasibility

A. Example (Vertexization of Robust Quadratic Stability) The triple (f. X, Q) is said to beapproximately feasiblé the fol-

Consider the famous quadratic stability problem with uncertain prwing condition holds. Given any > 0, there exists some® € X
rameter vectog € (Q, uncertain state-space mattXq) = Ao + such that
¢, Aigi being the affine linear combination of fixed matrices and
symmetric candidate Lyapunov matitk= P(x) with entriesz; € R Vol({geQ: f(z,q)>0})<e
viewed as the design variables. Then, the problem of robust quadratic
stability is to select a design vectere X = R” such thatP(z) > 0  WhereVol(-) denotes the volume operation. For such:* is called

andA” (¢)P(x) 4+ P(x)A(q) < 0 for all ¢ € Q. Hence, with an f-app.roximate solverAs indicated above, instead of guaranteeing
) T satisfaction off (z,q) < 0 for all ¢ € @, we seek solution vectors
F(.0) = Amax (A (@) P(x) + P(‘r)*4(4)) with associatediolation set

itis well known (for example, see [1]) that this strict feasibility design Ovaa(@) = (g €Q: flerq) > 0}

problem inz is reducible to the verticeg of (). That is, the satisfac- ) o _

tion of the Lyapunov inequality above for all € @ is equivalent to having volume less than any arbitrarily small prespecified level0.
AT(¢")P(z) + P(2)A(¢') < Ofori = 1,2,..., N. This result and Analogous to the case of robustness, we say thak(Q) is strictly
an analogous result for a more general linear matrix inequality, is tABProximately feasiblé there exists some > 0 such thatethe fol-
basis for numerical solution of the problem. That is, one considerd@ving condition holds: Given any > 0, there exists some® € X
“large LMI” by stacking the individual vertex LMIs. However, sinceSuch that

N = 2°, we see that the computational task can easily get out of hand. ) .

For example, with five states and ten uncertain parameters, the resulting Vol({g € Q: fa'.q) > —o}) <e

LMt is of size greater than 500 5000. One of the main objectives of this note is the generationapproxi-

B. Example (Vertexization of Robust Least Squares) mate solvers.
Many robustness problems reduce to least squares problems. IndBedapproximate Feasibility Versus Robust Feasibility

W:h l:tmi:re;rtalnlrilaratrr}?tervic(:jt@rre Q,u:};:ec;'tarl:vﬁflnrmr?gnx‘g(;;g ' Although robust feasibility trivially implies approximate fea-

uncertainn x 1 vectorb(q) and prespecified error tolerange> 0,the gy (it /o055 feasible, taker® = «/** for all ¢ > 0),

robust least squares problem (for example, see [5]) is to find a des Bre are simple examples to show that the converse is false. To
vectorz € X = R™ such that|A(¢)z — b(q)||* < 6% forall ¢ € Q. P P |

Letting illustrate, for the LMI-type scalar problem of [3] described by
flz,q) = 1 —2¢*, X = R and|q| < r defining Q, a straight-
fla,q) = |A(q)x = b(q)|)? = 6 forward calculation leads t&ol (Qyaa(x)) = 27 for x < 0 and
Vol (Qpea(x)) = 2min {r, 1/y/x} for x > 0. Hence, {, X, Q) is
to make a connection with the notation in this note, the key obsenapproximately feasible but not robustly feasible. On the other hand,
tion to make is that ifA(¢) andb(q) depend affine linearly op, the under the strengthened hypothesis that eitkieis compact or the
right-hand side above is convexgdnThis implies the inequality above triple (f, X, Q) satisfies a so-calledompactifiability condition(see
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[12] for details), it is readily shown that robust and approximat®. Remark

feasibility are equivalent. The main results of this note apply to the homogenizable perfor-

mance specification function&x, ¢) described below. As seen via ex-

amples in the sequel, this homogenizability requirement is satisfied in
To motivate the more formal technical exposition to follow inmany of the common robustness formulations.

Sections IV and V, we first illustrate our method on a simple scalar

example. To this end, we now compare the common sense solutbnHomogenization

method with the formal solution given in this note. Namely,

consider a simple scalar LM{(x,q) = 1 4+ xg(q) with g(¢) being

a continuous, possibly nonlinear, function a@ddefined by|q| < r.

By inspection, withX = R, the triple (f, X, Q) is strictly robustly

feasible if and only ify(¢) has one sign. On the other hand, letting Fr(vro, ve.q) =" f ¥ (w0, 2, q)

r and
‘I)(.’U) :/ c1+vfﬂ('7)dq .
—r T (20,2, q) <0, ifand only if f <‘—,q) <0
Zo

C. Motivation of Theory to Follow

W€ The functionf (z, ¢) is said to behomogenizable « if there exists
a continuous functioff* : (0,00) x R* x R* - R and a positive
integerk such that

we motivate the formalism to follow by making three key observations, ‘ . . .
which can be readily verified. Firs®(z) is a convex function of:.  forally > 0,20 > 0,2 € R" andq € Q. In this setting, the pair

Second, in view of the simply derived inequality (xo, 2) is called theextended design vector
Vol (@paalw)) =Vol({g € [=r.7]: 1+ zg(q) 2 O}) F. Example (LMI)
< / i e+ g = B(x) To illustrate the homogenization concept, we consider the LMI
it follows that (f, X, Q) is approximately feasible iP() can be made Folg) + il'iFi((]) <0

arbitrarily small by choice of. Third, if the minimum of® () is zero,
we can use any iteration sequengeleading to the minimum value of
the convex functior® () to obtain anc-approximate solver. That is
given anye > 0, by picking% suitably large so as to guarantee

B(xp) = / o' Traal gy < e F(.q) = Amax <Fo(q) + Zm,;F;(@) :

=1

=1
whereF;(¢q).i = 0,...,n, are known continuous symmetric matrix
' functions ofg € Q. To assure negative—definiteness above, let

and by taking:® = x, we have obtained anrapproximate solver. For the homogenization gf(z, ¢), we takek = 1 and

IV. APPROXIMATE FEASIBILITY INDICATORS AND HOMOGENIZATION FH (20, 2,0) = Amax <:coFo(q) + ZiUiFi(Q)> .

=1
te that for some special cases, no homogenization may be needed
causef(x,q) may already be homogeneous. For example, the
quadratic stability problem (see Section 1I-A), a special case of an
LMI, corresponds td%; (¢) = 0 above. In this case, one can take

duce the class of test functions which play the key role in establishi

Motivated by the observations in the previous section, we first intrEI
approximate feasibility of robustness problems.

A. Approximate Feasibility Indicator (AFI)

A continuous functions : R — R is said to be aiFl if it has the o, q) = f2,q).
following properties:

1) ¢(¢) > 0forall { € R; G. Example (Least Squares)

2) ¢(¢) < 1ifandonlyif¢ < 0; In the least-squares setup (see Section I1-B) with

3) ¢(¢) — 0 as¢ — —oo. ] b
fla.q) = [|[A(g)x = b(g)||* - 67
B. Remark a homogenization is obtained with= 2 and

Note that the aforementioned definition does not depend on + Y 2 202

xo, &, q) = ||A(@)x — b(q)xol||” — 67 ag.

(f, X. Q). However, as explained in Section V-B, there are a number I (o, q) = [|A(g)w = bg)o| g
of reasons associated with numerical computation why it is advanta- ) N
geous to tailor the choice of approximate feasibility indicattg) to  H- Example (Linear Inequalities)
the specificatiory («, q). For the problem in Section 1I-C with the performance specification

C. Types of AFIs fla,q) = max i (A(g)z = b(q))

The first type of AFI, exponential, was already introduced in Se¢he natural homogenization
tion I11-C; it has the formp(¢) = ¢°. Indeed, Conditions 1)-3) above Flaowe ) = max nL (Al e — bla)a
hold. Clearly, such modifications @g¢) = ¢ with o > 0 also sat- P (o, w,q) = maxa; (A(g)e = blg)wo)
isfy the definition above and can be used as AFls. Various piecewiséh & = 1 can be used. In the numerical example in Section VI-B, it
linear functions can also be taken as AFIs. For instance, the second tigpgeen that other homogenizations are possible; a so-called extended
of AFI is described by AFl is obtained which proves to be quite convenient for computation.

o 0 for¢<-p;

o(Q) = Bt for¢ > -5 V. MAIN RESULT
where3 > 0 is an adjustable parameter. There exist other types ofln the theorem to follow, the AR$(() is used with argument =
AFls. T (xo, z, q) in the determination of approximate feasibility.
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Theorem: Given the continuous homogenizable performance speedted using the standard Monte Carlo technique for approximate cal-
ification function f(z,¢), X = R"™ and an approximate feasibility culation of integrals. Namely

indicator¢(-), define L |
zg,%,q7
D(rg,7) = Vch (z0,2,9%)

@(il}o, ;l?) = /Q ¢(f+(°1707 €, Q))Chj - 7=1
and where¢’ = (¢/,.. .,q}) € Q,j =1,...,N, are samples for the
= inf d(ao,a) uncertainty obtained via the uniform distribution. In this first example,
T 20>0, 0> no homogenization is needed and we fi$éxo, 2, q) = f(x, ¢); see
Then, the following holds: Sections II-B and IV-F. In the second example, we see that it is some-

times possible to work with a function which might appropriately be
called anextended AFIThe extended AFI has the advantage that it is
tailored to the specific problem and the requisite optimization does not
require Monte Carlo integration.

2 A. Quadratic Stability
had | — < @(xo, ). . . .
Vol <Ql ¢ <mo )) < B0, ) This first example is taken from [3] where the special case of AFI

o ) theory was provided in the context of LMIs. Indeed, we consider
Proof: To prove i), it suffices to show that for any > 0 there quadratic stability of the: x = interval matrix

existzg > 0 andz® € R" such that®(a§,2°) < =. Indeed, by o

strict robust feasibility there exists some= 2/°** € R™ such that A=4o+ A4, AA=((A4))),
fl@le*s q) < oforall ¢ € Q. Letting f(xo,x,¢) be the func- [AA;| <rSy; 4,5=1,....n, S=((Si))
tion obtained fromy (x, ¢) via the homogenizability assumption and inof [3] described by

view of Condition 3) defining an approximate feasibility indicatgr

i) strict robust feasibility of £, X, ) implies®* = 0;
i) ®* = 0 implies approximate feasibility off( X, Q);
i) forany o > 0 andz € R"

it follows that with~ suitably largex§ = v ande® = v/, the -2 -2 0
inequality Ad=[1 0 0
1 0 -2

o (FF (5,2%,0) < o 0.1651 0.9394 0.5691

Vol(@) S = 0.2451 0.4727 0.1457

holds for allg € Q. It now follows that: 0.7004 0.4014 0.3141

o : . : c and radius: > 0. The goal is to determine if a positive-definite matrix
® (2g,27) = / o (F7 (25,2, 0)) dg < / qu == P exists such thatt” P + PA < 0 for all admissibleA.
@ Q To formulate using the notation in Sections I-lll, any perturbation

To prove ii) and iii), we fix arbitraryry > 0 andz € R". Using the - matrix A 4 is associated with a nine-dimensional uncertainty vegtor
definition of £+ (0, z, ¢) and basic facts defining the AFI, it follows and the associated bax is defined by the shaping matri. In addi-

that: tion, the optimization variable € R° is composed of the six distinct
x B . x entries of the symmetric positive—definite matFx Since this example
Vol { Qbad o =Vol{qa€Q:f 707 >0 involves nine uncertain parameters, the standard LMI technique re-
i Iving an optimization problem described byax M matrix
=Vol ({¢€Q: fH(xo.2.q)>0 quires so
(.) ({q @: J7 (w0, q) }) with M = 3x 2 = 1536. Even such a moderated3 problem pushes
:/ dq the limits of standard LMI solvers such as LMI Toolbox in Matlab in
f:*(mo,-r,q)zo the sense that the overall size of the system matrix in the internal LMI
S/ S(f (w0, 2, ¢))dg Toolbox r(_epresentatlon is beyond the allowable limits. _
T (w0,0,a)>0 Now, with» = 1, we demonstrate use of the method prescribed by

S } the theorem. Note th&0l(Q) = 512 in this case. The convex min-

< /@ O (f7 (wo,w,q)) dg = (o, ). imization of ® () was carried out with an exponential AB(() =
e¢ and usingN = 400 samples for each integration; we obtained
®* ~ 11.6107; Matlab execution time was about 35 s on a PC running
at 488 MHz. Here, approximate feasibility is not guaranteed and it is

The theorem above indicates that the approximate feasibility quesncluded that there is no common stabiliziRig> 0 for the interval
tion can be recast as an optimization problem and it is important to nééenily (LMl is infeasible). This minimum valué™ was achieved with
that this optimization can often be accomplished via convex prograthe positive—definite matrix

A. Remarks

ming. Indeed, it can be readily shown that this is the cag&ffro, =, ¢) 19.5989 16.1542 —4.6553
is convex in {o, ) and¢(¢) is nondecreasing convex. Whereas the P. = | 16.1542 304427 —2.1223
conditions in the theorem of Section V for approximate feasibility do 46553 —2.1923  9.4100

not depend on the choice of ABL, the behavior of a numerical algo_éﬂorderto validate this result, we carried a large-scale Monte Carlo test
rithm is a different matter. This is particularly true for many cases wh ' ; i
P y y th N = 100,000 samples and obtainédol (Qp.q( P-)) =~ 1.1315.

the integral above is not computable in closed form and Monte Cal o . . L
integration is used. ﬁ,s predicted by the theory, this quantity is less tgn In the second

part of this experiment, radius= 0.5 was taken; this time, optimiza-
tion resulted in®* ~ 0 and
2419.6 1228.7 19.3
In this section, two numerical examples are considered in correspon- Py = | 1228.7 5572.3 —686.7
dence with those given in Section Il. The functi®:, =) is com- 19.3 —686.7 1403.9

VI. NUMERICAL EXAMPLES
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In accordance with the theorem, this LMI was deemed to be aNeting that the feasibility set for the nominalg, by) is the interior of
proximately feasible and the subsequent Monte Carlo test yieldea triangle with verticeg—2 1]7,[1 1] and[1 —-2]7,weran

Vol(Qpaa(P:)) = 0. the algorithm with many different values of the uncertainty radits
find the largest radius = rmax ~ 1.12 for which (f, X, Q) is strictly
B. Extended AFI for Robust Linear Inequalities robustly feasible.

Forr = 1.07 (below r...x) and randomly generated initial con-
ditions, the method was seen to converge leadin§gtox 0 (with
CPU time, dependent on initial condition, ranging from 1 to 2.5 s on
a PC running at 488 MHz) and the subsequent Monte Carlo test, with
N = 1000000 uniformly spaced samples, giva&1(Qs.4) ~ 0.

¢ ¢ When we tookr = 1.17 (aboverm.x), a variety of random initial con-
Alg) = Ao+ Y Aigi blg)=bo+ > bigi ditions resulted in:® ~ [0.1131 — 0.5125]* with &* ~ 0.0725 and
=1 = Vol(Quaq) = 0.0259 < ®*. This result is consistent with the theory.
with eachA; being a fixedm x » matrix and eaclh; being a fixed The number of iterations is 90—140 depending on the initial conditions
m x 1 vector. picked. Further increase of gives higher values ob* and respec-

1) The Function®: The calculations for this example are carriedively, greaterQ,.. areas. Experiments were conducted with various
out using a so-calleextended AFwhich is tailored to the structure at data, e.g., unboundel;”, higher dimensions of andb, etc. The
hand. To this end, we construct a functidiz,. =) which majorizes conclusions are of the same flavor.
the volume 0fQs.4(x/x0) and has the properties required in the the-
orem. Specifically, letting;; denote a unit vector in thgh coordinate VII. FUTURE RESEARCH
direction, forz as above and, > 0, we introduce the function

We considerd(g)z < b(g) with € R" being the design vector,
A(q) being anm x n affine linear matrix function anél(¢) being an
mx 1 affine linear vector function of the uncertaintye R, |¢;| < ri,
ie.,

The use of amxtended AFin Section VI resulted in the elimination
, N T (A(g)e—b(a)r0) of Monte Carlo integration in favor of a closed form fér. It is felt
(w0, 7,q) = Ze ' that further research along these lines would be worthwhile. To illus-
) = ) trate possible directions of research we recall that in the least squares
which plays the role 0b(f ™ (0. . ¢)). This allows for the computa- problem with AFI¢(¢) = e, multivariable integration was required.

tion of the corresponding integral To avoid such integration, one might consider other measures of feasi-
i bility; e.g., for positive integek, let
(P(T(Jvr):/ 99(7‘0.\7',(‘])(7(1 ty’ 9 P ger,

Q e 1A = bl
in closed form given by Bi(x) = /Q < B dq
s ¢ sinh(y] B;7;) njrﬁo and_ note_ that a Chebysh(_ev—Markoy analysis Iead_s to the fol-
Q(xg,7) =2 ZH Tijf ‘ lowing: First, for any candidate design vectetr the inequality
=1 j=1 i P Vol(Qpua(r)) < P (2) is satisfied. Second, if the triplg (X, Q) is
wheres; = §;(z) = Aje—b;x0; j = 0,1,..., (. First,itcanreadily strictly robustly feasible, thetimy . inf, ¢ (x) = 0. In view of

be established that strict robust feasibility implies thatan be driven the above, it can be argued that robust feasibility can be studied via
to zero. Next, it is assumed that the infimumofs zero and noted that the sequence of convex optimizatio®g = inf, ®¢(x). There are
with now two key points to note: First, for each fixed even valué othe
. T AN . requisite integral definingk, (=) can be computed in closed form,
Qpaa (@) = {q € Qini (Alg)e —blg) 2 Ofor somez} i.e., Monte Carlo simulation is not needed. Second; gsts large, the
a lengthy but straightforward manipulation of volume and integral irsumber of terms comprising the integral for. (=) becomes too large

equalities leads to to handle.
- Motivated by the computational complexity problem associated with
Vol <Qbad <T)) < P(xo, ) largek above, we sketch a new direction of research which we believe
0

) ) will lead to low % values when the problem is suitably wedinditioned
for all pairs (o, x) with o > 0. _ ~_ Indeed, lep € (0,1) be an acceptabmputational thresholtbr the
2) Numerical Example:In this example( = 2 is used and we ini- reative volume of violation. That is, we deerfi (X, ) to beapprox-

tialized computation of the extended design parameter vector by takiﬁ%tely feasible at tolerance levelif
xo = " randomly generated if0, 1] andx = =™ as a feasible Vol (Quau(z))
point for the nominal paifAo, bo). That is W

2™ e XIS = {r € R : Aoz < bo}. for somex € X. This leads us to consider the extent to which jow
values are achievable usidg. (z) with low values ofk.

Our claim is that by defining varioumnditioning numberfor a ro-
bust least squares problem, the required threshiddttainable with a

<p

In addition, an experiment was conducted witk= 2, m = 3 and the
following randomly generated data:

1 0 0.9376 0“210( correspondingly low value of if the underlying problem is well con-
A= 0 1 Ar = —0.2886  0.7896 ditioned. To see this, suppose= = achieves strict robust feasibility
-1 -1 —0.9019  —0.4277 and consider the conditionére (0, 1) given by
—0.4976 0.8816 ) l4(q) = b(q)||
Ay =| 0.8655  0.4037 f = max T—=——"".
—0.7380 0.6955 That is, the closer we get to the constraint violation, the more ill-con-
and ditioned we consider the problem. Now, in view of the easily derived
1 0.0441 —0.5439 inequality
bo=1[1 by = | 0.8658 by = | —0.1007

1 0.4267 —0.6556 ®; < #"Vol(Q)
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it is apparent that On Functional Approximation of the Equivalent Control
Using Learning Variable Structure Control
j> loge
~ log# Wen-Jun Cao and Jian-Xin Xu

will suffice in order to achieve the desired specification.

The above is only intended to be one example of various condi- Abstract—A learning variable structure control (LVSC) approach

fi To further illustrate. if instead th diti IS originated to obtain the equivalent controlof a general class of mul-
loners. 1o further illustrate, It we Instead use the conditoner tiple-input—multiple-output (MIMO) variable structure systems under

. _ 9 repeatable control tasks. LVSC synthesizes variable structure control

oy = 1 / lA(g)7 = bl dq (VSC) as the robust part which stabilizes the system, and learning control
Vol(Q) o 9 } (LC) as the “plug-in” intelligent part which completely nullifies the effects

of the matched uncertainties on tracking error. Rigorous proof based on

synonymous with expected behavior, the analysis yields energy function and functional analysis shows that the tracking error
sequence convergesniformly to zero, and that the bounded LC sequence
| ( o converges to theequivalent control almost everywhere
0g a)

__\"2/ Index Terms—Equivalent control, learning control (LC), sliding mode,
~  log# variable structure control (VSC).

Our point of view in this new line of research is tiatindo, are
unknown but that we can “expect” to succeed with lbwalues if the |. INTRODUCTION
roblem is well conditioned. There is an obvious analogy between this . .

goint of view and the one taken in the study of mathem?al)t/ical program-V"’m‘”Ible structure cpntrol (VSC) is often used to h_andle the

ming algorithms, i.e., efficacy of an algorithm is often judged on th\é/orst-case control environment. v_vher_e system pgrturbatlons can be

basis of unknown underlying conditioners related to the objective fun%t_ructured, unstructured, deterministic, stochastlc, and per5|stent,

tion and constraints. and only upper _bou_nds of syste_m pertu_rbatl_o_ns are available [1].
In practice, the inevitable switching nonidealities, such as delays,
incur the chattering phenomenon. Replacing the signum function

ACKNOWLEDGMENT with a continuous function eliminates chattering, but degrades perfect

tracking.

~ The authors express their gratitude to A. Ganesan for suggesting afy thegcontrol environment is less severe than the worst case, we may

improved version of the proof for the case in Section IlI-B when apsyme yp with more appropriate control approaches, such as incorpo-

proximate and robust feasibility are equivalent. rating VSC with adaptive techniques, with time-delay control [2], etc.
Each of them caters to a particular control environment with naore
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